IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6234-d898907.html
   My bibliography  Save this article

Investigation of the Adsorption Process of Biochar Açaí ( Euterpea olerácea Mart.) Seeds Produced by Pyrolysis

Author

Listed:
  • Lauro Henrique Hamoy Guerreiro

    (Graduate Program of Chemical Engineering, Campus Profissional-UFPA, Federal University of Pará, Rua Augusto Corrêa N°1, Belém 66075-110, Brazil)

  • Ana Cláudia Fonseca Baia

    (Graduate Program of Chemical Engineering, Campus Profissional-UFPA, Federal University of Pará, Rua Augusto Corrêa N°1, Belém 66075-110, Brazil)

  • Fernanda Paula da Costa Assunção

    (Institute of Technology, Federal University of Pará, Rua Augusto Corrêa N°1, Belém 66075-110, Brazil)

  • Gabriel de Oliveira Rodrigues

    (Faculty of Chemical Engineering, State University of Amazonas-UEA, Avenida Darcy Vargas N°1200, Manaus 69050-020, Brazil)

  • Rafael Lopes e Oliveira

    (Faculty of Chemical Engineering, State University of Amazonas-UEA, Avenida Darcy Vargas N°1200, Manaus 69050-020, Brazil)

  • Sergio Duvoisin Junior

    (Faculty of Chemical Engineering, State University of Amazonas-UEA, Avenida Darcy Vargas N°1200, Manaus 69050-020, Brazil)

  • Anderson Mathias Pereira

    (Faculty of Agricultural Sciences, Federal University of Amazonas, Av. Gen. Rodrigo Octávio N°6200, Manaus 69080-900, Brazil)

  • Erika Milene Pinto de Sousa

    (Study Group on Biomass Processing, Federal Rural University of the Amazon, Campus Capanema, Avenida Barão de Capanema, SN, Bairro Caixa D’água, Capanema 68700-665, Brazil)

  • Nélio Teixeira Machado

    (Faculty of Sanitary and Environmental Engineering, Applied Chemistry Research Group, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N°1, Belém 66075-900, Brazil)

  • Douglas Alberto Rocha de Castro

    (Cursos de Engenharia Química, Mecânica e Elétrica, Lutheran University Center of Manaus—CEULM/ULBRA, Avenida Carlos Drummond de Andrade N°1460, Manaus 69077-730, Brazil)

  • Marcelo Costa Santos

    (Graduate Program of Chemical Engineering, Campus Profissional-UFPA, Federal University of Pará, Rua Augusto Corrêa N°1, Belém 66075-110, Brazil)

Abstract

This work aims to investigate the influence of temperature and chemical impregnation in the textural and morphological composition of the bio-adsorbent of bio-adsorption via thermal cracking of the seeds of açaí. The experiments were carried out at 400 °C and 450 °C using a pilot scale reactor. The efficiency of the organic process was calculated in terms of liquid and solid products selected with a chemical impregnation process with NaOH, mainly with the liquid that had a greater product conversion. The elementary samples of the solid products occur with the occurrence of carbonization with an increase in the temperature of the process and the presence of impregnation. The textural and morphological characterization occurred with an analysis of FT-IR, SEM/EDS, XRF, and B.E.T. The in-phase product was developed through the creation of açaí seed in nature and impregnated with NaOH solution (2 M) at temperatures of 400 °C and 450 °C. The adsorption kinetics of acetic acid were investigated at 5, 10, 15, 20, 60, 120, and 180 s. The adsorption is higher at 450 °C and with the chemical impregnation of NaOH since the experiments were able to remove an amount of 317.51 mg acid/g adsorbent acetic acid. All the models analyzed fit the experiments, both for the kinetic models (pseudo-first order and pseudo-second order) and for the equilibrium models (Langmuir and Freundlich).

Suggested Citation

  • Lauro Henrique Hamoy Guerreiro & Ana Cláudia Fonseca Baia & Fernanda Paula da Costa Assunção & Gabriel de Oliveira Rodrigues & Rafael Lopes e Oliveira & Sergio Duvoisin Junior & Anderson Mathias Perei, 2022. "Investigation of the Adsorption Process of Biochar Açaí ( Euterpea olerácea Mart.) Seeds Produced by Pyrolysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6234-:d:898907
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production," Applied Energy, Elsevier, vol. 94(C), pages 129-140.
    2. Maria Elizabeth Gemaque Costa & Fernanda Paula da Costa Assunção & Tiago Teribele & Lia Martins Pereira & Douglas Alberto Rocha de Castro & Marcelo Costa Santo & Carlos Emerson Ferreira da Costa & Maj, 2021. "Characterization of Bio-Adsorbents Produced by Hydrothermal Carbonization of Corn Stover: Application on the Adsorption of Acetic Acid from Aqueous Solutions," Energies, MDPI, vol. 14(23), pages 1-22, December.
    3. Van de Velden, Manon & Baeyens, Jan & Brems, Anke & Janssens, Bart & Dewil, Raf, 2010. "Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction," Renewable Energy, Elsevier, vol. 35(1), pages 232-242.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gérson Daniel Valdez & Flávio Pinheiro Valois & Sammy Jonatan Bremer & Kelly Christina Alves Bezerra & Lauro Henrique Hamoy Guerreiro & Marcelo Costa Santos & Lucas Pinto Bernar & Waldeci Paraguassu F, 2023. "Improving the Bio-Oil Quality of Residual Biomass Pyrolysis by Chemical Activation: Effect of Alkalis and Acid Pre-Treatment," Energies, MDPI, vol. 16(7), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    2. Daegi Kim & Kunio Yoshikawa & Ki Young Park, 2015. "Characteristics of Biochar Obtained by Hydrothermal Carbonization of Cellulose for Renewable Energy," Energies, MDPI, vol. 8(12), pages 1-9, December.
    3. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    4. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    5. Ábrego, J. & Atienza-Martínez, M. & Plou, F. & Arauzo, J., 2019. "Heat requirement for fixed bed pyrolysis of beechwood chips," Energy, Elsevier, vol. 178(C), pages 145-157.
    6. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    7. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    8. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    9. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    10. Kartal, Furkan & Dalbudak, Yağmur & Özveren, Uğur, 2023. "Prediction of thermal degradation of biopolymers in biomass under pyrolysis atmosphere by means of machine learning," Renewable Energy, Elsevier, vol. 204(C), pages 774-787.
    11. Mouna Gmar & Hassine Bouafif & Besma Bouslimi & Flavia L. Braghiroli & Ahmed Koubaa, 2022. "Pyrolysis of Chromated Copper Arsenate-Treated Wood: Investigation of Temperature, Granulometry, Biochar Yield, and Metal Pathways," Energies, MDPI, vol. 15(14), pages 1-15, July.
    12. Granada, E. & Eguía, P. & Vilan, J.A. & Comesaña, J.A. & Comesaña, R., 2012. "FTIR quantitative analysis technique for gases. Application in a biomass thermochemical process," Renewable Energy, Elsevier, vol. 41(C), pages 416-421.
    13. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    14. Yimin Deng & Renaud Ansart & Jan Baeyens & Huili Zhang, 2019. "Flue Gas Desulphurization in Circulating Fluidized Beds," Energies, MDPI, vol. 12(20), pages 1-19, October.
    15. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
    16. Liu, Hui & Liu, Jingyong & Huang, Hongyi & Evrendilek, Fatih & Wen, Shaoting & Li, Weixin, 2021. "Optimizing bioenergy and by-product outputs from durian shell pyrolysis," Renewable Energy, Elsevier, vol. 164(C), pages 407-418.
    17. Brillard, A. & Brilhac, J.F., 2020. "Improvements of global models for the determination of the kinetic parameters associated to the thermal degradation of lignocellulosic materials under low heating rates," Renewable Energy, Elsevier, vol. 146(C), pages 1498-1509.
    18. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Li, Xiangyu & Li, Guangyu & Li, Jian & Yu, Yanqing & Feng, Yu & Chen, Qun & Komarneni, Sridhar & Wang, Yujue, 2016. "Producing petrochemicals from catalytic fast pyrolysis of corn fermentation residual by-products generated from citric acid production," Renewable Energy, Elsevier, vol. 89(C), pages 331-338.
    20. Trivedi, Abhinav & Verma, Amit Ranjan & Kaur, Supreet & Jha, Bhaskar & Vijay, Vandit & Chandra, Ram & Vijay, Virendra Kumar & Subbarao, P.M.V. & Tiwari, Ratnesh & Hariprasad, P. & Prasad, Rajendra, 2017. "Sustainable bio-energy production models for eradicating open field burning of paddy straw in Punjab, India," Energy, Elsevier, vol. 127(C), pages 310-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6234-:d:898907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.