IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5782-d884030.html
   My bibliography  Save this article

Speed Control of Switched Reluctance Motor Based on Regulation Region of Switching Angle

Author

Listed:
  • Yun Zhang

    (School of Rail Transportation, Shandong Jiaotong University, Jinan 250357, China)

  • Liang Chen

    (School of Rail Transportation, Shandong Jiaotong University, Jinan 250357, China)

  • Zhixue Wang

    (School of Rail Transportation, Shandong Jiaotong University, Jinan 250357, China)

  • Enguang Hou

    (School of Rail Transportation, Shandong Jiaotong University, Jinan 250357, China)

Abstract

This paper studies the speed control strategy of a switched reluctance motor based on angle-position control (APC). The switched reluctance motor has three control parameters: turn-on angle, turn-off angle and voltage PWM duty cycle. This paper studies the function of the three parameters and designs the control algorithms of the parameters, respectively, which can reduce the coupling degree, simplify the control process, and realize the optimal control of the switched reluctance motor. By studying the nonlinear characteristics of the switched reluctance motor, the optimal current waveform in the effective working range of the inductor is obtained, and then a control strategy of the turn-on angle is designed to realize the ideal winding current waveform. According to the torque characteristics of the motor, taking the coincidence of the freewheeling zero point and the position angle at the end of the maximum inductance interval as the control target, a control strategy for the turn-off angle that makes full use of the effective inductance working interval is proposed, which improves the efficiency of the system. For the nonlinear and time-variant switched reluctance motor running process, a data-driven model-free adaptive control algorithm is introduced, and a switched reluctance motor speed control algorithm based on voltage PWM duty cycle is designed. The main contribution of this paper is to propose a control strategy that is generally applicable to switched reluctance motors, which does not depend on the precise mathematical model of the motor. The control algorithms are designed separately for the three control parameters according to the characteristics of the motor, which reduces the degree of coupling among them. A switched reluctance motor drive system based on angle-position control is designed. This strategy is especially suitable for driving the load with sudden large torque pulsation.

Suggested Citation

  • Yun Zhang & Liang Chen & Zhixue Wang & Enguang Hou, 2022. "Speed Control of Switched Reluctance Motor Based on Regulation Region of Switching Angle," Energies, MDPI, vol. 15(16), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5782-:d:884030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5782/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5782/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng Li & Xiaopeng Wei & Jinsong Wang & Libo Liu & Shenhui Du & Xiaoqiang Guo & Hexu Sun, 2022. "Design of a Deflection Switched Reluctance Motor Control System Based on a Flexible Neural Network," Energies, MDPI, vol. 15(11), pages 1-16, June.
    2. Yuanfeng Lan & Yassine Benomar & Kritika Deepak & Ahmet Aksoz & Mohamed El Baghdadi & Emine Bostanci & Omar Hegazy, 2021. "Switched Reluctance Motors and Drive Systems for Electric Vehicle Powertrains: State of the Art Analysis and Future Trends," Energies, MDPI, vol. 14(8), pages 1-29, April.
    3. Xing Wang & Ryszard Palka & Marcin Wardach, 2020. "Nonlinear Digital Simulation Models of Switched Reluctance Motor Drive," Energies, MDPI, vol. 13(24), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiweta Emmanuel Abunike & Ogbonnaya Inya Okoro & Sumeet S. Aphale, 2022. "Intelligent Optimization of Switched Reluctance Motor Using Genetic Aggregation Response Surface and Multi-Objective Genetic Algorithm for Improved Performance," Energies, MDPI, vol. 15(16), pages 1-23, August.
    2. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    3. Mahmoud Hamouda & Fahad Al-Amyal & Ismoil Odinaev & Mohamed N. Ibrahim & László Számel, 2022. "A Novel Universal Torque Control of Switched Reluctance Motors for Electric Vehicles," Mathematics, MDPI, vol. 10(20), pages 1-21, October.
    4. Yuanfeng Lan & Julien Croonen & Mohamed Amine Frikha & Mohamed El Baghdadi & Omar Hegazy, 2022. "A Comprehensive Performance Comparison between Segmental and Conventional Switched Reluctance Machines with Boost and Standard Converters," Energies, MDPI, vol. 16(1), pages 1-18, December.
    5. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    6. Yuanfeng Lan & Mohamed Amine Frikha & Julien Croonen & Yassine Benômar & Mohamed El Baghdadi & Omar Hegazy, 2022. "Design Optimization of a Switched Reluctance Machine with an Improved Segmental Rotor for Electric Vehicle Applications," Energies, MDPI, vol. 15(16), pages 1-16, August.
    7. Christodoulos Katis & Athanasios Karlis, 2023. "Evolution of Equipment in Electromobility and Autonomous Driving Regarding Safety Issues," Energies, MDPI, vol. 16(3), pages 1-34, January.
    8. Mahmoud A. Gaafar & Arwa Abdelmaksoud & Mohamed Orabi & Hao Chen & Mostafa Dardeer, 2021. "Performance Investigation of Switched Reluctance Motor Driven by Quasi-Z-Source Integrated Multiport Converter with Different Switching Algorithms," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    9. Yawei Wang & Nicola Bianchi & Ronghai Qu, 2022. "Comparative Study of Non-Rare-Earth and Rare-Earth PM Motors for EV Applications," Energies, MDPI, vol. 15(8), pages 1-18, April.
    10. Xinming Xu & Yang Gu & Guangjun Liu, 2022. "Study on a Wheel Electric Drive System with SRD for Loader," Energies, MDPI, vol. 15(10), pages 1-16, May.
    11. Dimitrios Rimpas & Stavrοs D. Kaminaris & Dimitrios D. Piromalis & George Vokas & Konstantinos G. Arvanitis & Christos-Spyridon Karavas, 2023. "Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis," Energies, MDPI, vol. 16(6), pages 1-24, March.
    12. Vijina Abhijith & M. J. Hossain & Gang Lei & Premlal Ajikumar Sreelekha & Tibinmon Pulimoottil Monichan & Sree Venkateswara Rao, 2022. "Hybrid Switched Reluctance Motors for Electric Vehicle Applications with High Torque Capability without Permanent Magnet," Energies, MDPI, vol. 15(21), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5782-:d:884030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.