IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5704-d881452.html
   My bibliography  Save this article

Modified Quasi-Opposition-Based Grey Wolf Optimization for Mathematical and Electrical Benchmark Problems

Author

Listed:
  • Salil Madhav Dubey

    (Department of Electrical Engineering, Madhav Institute of Technology & Science (MITS), Gwalior 474005, India)

  • Hari Mohan Dubey

    (Department of Electrical Engineering, Birsa Institute of Technology Sindri (BIT Sindri), Sindri, Dhanbad 828123, India)

  • Surender Reddy Salkuti

    (Department of Railroad and Electrical Engineering, Woosong University, Daejeon 34606, Korea)

Abstract

This paper proposes a modified quasi-opposition-based grey wolf optimization (mQOGWO) method to solve complex constrained optimization problems. The effectiveness of mQOGWO is examined on (i) 23 mathematical benchmark functions with different dimensions and (ii) four practical complex constrained electrical problems that include economic dispatch of 15, 40, and 140 power generating units and a microgrid problem with different energy sources. The obtained results are compared with the reported results using other methods available in the literature. Considering the solution quality of all test cases, the proposed technique seems to be a promising alternative for solving complex constrained optimization problems.

Suggested Citation

  • Salil Madhav Dubey & Hari Mohan Dubey & Surender Reddy Salkuti, 2022. "Modified Quasi-Opposition-Based Grey Wolf Optimization for Mathematical and Electrical Benchmark Problems," Energies, MDPI, vol. 15(15), pages 1-29, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5704-:d:881452
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5704/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5704/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sen Zhang & Yongquan Zhou, 2015. "Grey Wolf Optimizer Based on Powell Local Optimization Method for Clustering Analysis," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-17, November.
    2. Jiangtao Yu & Chang-Hwan Kim & Abdul Wadood & Tahir Khurshiad & Sang-Bong Rhee, 2018. "A Novel Multi-Population Based Chaotic JAYA Algorithm with Application in Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 11(8), pages 1-25, July.
    3. Kutaiba Sabah Nimma & Monaaf D. A. Al-Falahi & Hung Duc Nguyen & S. D. G. Jayasinghe & Thair S. Mahmoud & Michael Negnevitsky, 2018. "Grey Wolf Optimization-Based Optimum Energy-Management and Battery-Sizing Method for Grid-Connected Microgrids," Energies, MDPI, vol. 11(4), pages 1-27, April.
    4. B Suman & P Kumar, 2006. "A survey of simulated annealing as a tool for single and multiobjective optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1143-1160, October.
    5. Mahamed G. H. Omran & Maurice Clerc & Fatme Ghaddar & Ahmad Aldabagh & Omar Tawfik, 2022. "Permutation Tests for Metaheuristic Algorithms," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    6. Basu, M. & Chowdhury, A., 2013. "Cuckoo search algorithm for economic dispatch," Energy, Elsevier, vol. 60(C), pages 99-108.
    7. Sarat Chandra Nayak & Bijan Bihari Misra, 2019. "A chemical-reaction-optimization-based neuro-fuzzy hybrid network for stock closing price prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-34, December.
    8. Sultana, U. & Khairuddin, Azhar B. & Mokhtar, A.S. & Zareen, N. & Sultana, Beenish, 2016. "Grey wolf optimizer based placement and sizing of multiple distributed generation in the distribution system," Energy, Elsevier, vol. 111(C), pages 525-536.
    9. Jayabarathi, T. & Raghunathan, T. & Adarsh, B.R. & Suganthan, Ponnuthurai Nagaratnam, 2016. "Economic dispatch using hybrid grey wolf optimizer," Energy, Elsevier, vol. 111(C), pages 630-641.
    10. Shu-Xia Li & Jie-Sheng Wang, 2015. "Dynamic Modeling of Steam Condenser and Design of PI Controller Based on Grey Wolf Optimizer," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-9, December.
    11. Singh, Diljinder & Dhillon, J.S., 2019. "Ameliorated grey wolf optimization for economic load dispatch problem," Energy, Elsevier, vol. 169(C), pages 398-419.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sushmita Kujur & Hari Mohan Dubey & Surender Reddy Salkuti, 2023. "Demand Response Management of a Residential Microgrid Using Chaotic Aquila Optimization," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    2. Aokang Pang & Huijun Liang & Chenhao Lin & Lei Yao, 2023. "A Surrogate-Assisted Adaptive Bat Algorithm for Large-Scale Economic Dispatch," Energies, MDPI, vol. 16(2), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    2. Yang, Wenqiang & Zhu, Xinxin & Xiao, Qinge & Yang, Zhile, 2023. "Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles," Energy, Elsevier, vol. 282(C).
    3. Rajakumar, R. & Sekaran, Kaushik & Hsu, Ching-Hsien & Kadry, Seifedine, 2021. "Accelerated grey wolf optimization for global optimization problems," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    4. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    5. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
    6. Swarupa Pinninti & Srinivasa Rao Sura, 2023. "Renewables based dynamic cost-effective optimal scheduling of distributed generators using teaching–learning-based optimization," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 353-373, March.
    7. Wang, Hong-Jiang & Pan, Jeng-Shyang & Nguyen, Trong-The & Weng, Shaowei, 2022. "Distribution network reconfiguration with distributed generation based on parallel slime mould algorithm," Energy, Elsevier, vol. 244(PB).
    8. Meng, Anbo & Zeng, Cong & Wang, Peng & Chen, De & Zhou, Tianmin & Zheng, Xiaoying & Yin, Hao, 2021. "A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem," Energy, Elsevier, vol. 225(C).
    9. Singh, Diljinder & Dhillon, J.S., 2019. "Ameliorated grey wolf optimization for economic load dispatch problem," Energy, Elsevier, vol. 169(C), pages 398-419.
    10. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    11. Asma Khalil Alkhamis & Manar Hosny, 2023. "A Multi-Objective Simulated Annealing Local Search Algorithm in Memetic CENSGA: Application to Vaccination Allocation for Influenza," Sustainability, MDPI, vol. 15(21), pages 1-37, October.
    12. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    13. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    14. Felipe, Ángel & Ortuño, M. Teresa & Righini, Giovanni & Tirado, Gregorio, 2014. "A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 111-128.
    15. Ghulam Abbas & Irfan Ahmad Khan & Naveed Ashraf & Muhammad Taskeen Raza & Muhammad Rashad & Raheel Muzzammel, 2023. "On Employing a Constrained Nonlinear Optimizer to Constrained Economic Dispatch Problems," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    16. Loau Al-Bahrani & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2021. "Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    17. Sheng, Wanxing & Li, Rui & Yan, Tao & Tseng, Ming-Lang & Lou, Jiale & Li, Lingling, 2023. "A hybrid dynamic economics emissions dispatch model: Distributed renewable power systems based on improved COOT optimization algorithm," Renewable Energy, Elsevier, vol. 204(C), pages 493-506.
    18. Chang-Yong Lee & Dongju Lee, 2014. "Determination of initial temperature in fast simulated annealing," Computational Optimization and Applications, Springer, vol. 58(2), pages 503-522, June.
    19. Nikola Ivković & Robert Kudelić & Matej Črepinšek, 2022. "Probability and Certainty in the Performance of Evolutionary and Swarm Optimization Algorithms," Mathematics, MDPI, vol. 10(22), pages 1-25, November.
    20. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5704-:d:881452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.