IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v154y2022ics0960077921009723.html
   My bibliography  Save this article

“AI-MCMC” for the parametric analysis of the hormonal therapy of cancer

Author

Listed:
  • Wang, Fuzhang
  • Idrees, M
  • Sohail, Ayesha

Abstract

Over the past few decades, there have been significant advances in clinical, experimental, and theoretical frameworks for understanding cancer cells’ complexities and their interactions with the immune system. Breast cancer progression is associated with estrogen signalling and the estrogen receptor (ER), and the majority of human breast cancers originate as estrogen-dependent. Additionally, mounting data indicate that ER signalling is complicated, comprising both coregulatory proteins and extranuclear actions. This paper deals with a mathematical model of the tumour-immune response incorporating anti-tumour cytokines and estrogen. The designed model is formulated based on a detailed phenomenological description of the kinetic theory of tumour, immune system and estrogen. The experimental studies are used to estimate the model’s parameters, and the Lyapunov approach is used to determine the stability of equilibrium points. Monte-Carlo-Markov-Chain (MCMC) methods have been used extensively to deal with the nonlinear fractals, and in the field of artificial intelligence for the evaluation of the parameters. In this manuscript, the sensitivity analysis is conducted to assess the parameters’ uncertainty with the aid of AI-MCMC toolbox. The numerical simulations of the model support the results of clinical studies. Furthermore, we discuss the pharmacokinetics and pharmacodynamics of chemotherapy and introduce cellular immunotherapy as treatments for boosting immune cells to fight against tumours. Our findings seem to indicate that the proposed model is a strong candidate for studying the dynamics of estrogen, and it helps in the provision of complex interactions of estrogen with breast tumours and immune cells.

Suggested Citation

  • Wang, Fuzhang & Idrees, M & Sohail, Ayesha, 2022. "“AI-MCMC” for the parametric analysis of the hormonal therapy of cancer," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:chsofr:v:154:y:2022:i:c:s0960077921009723
    DOI: 10.1016/j.chaos.2021.111618
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921009723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lamboni, Matieyendou & Monod, Hervé & Makowski, David, 2011. "Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 450-459.
    2. Judah Folkman & Raghu Kalluri, 2004. "Cancer without disease," Nature, Nature, vol. 427(6977), pages 787-787, February.
    3. S. Razmyan & F. Hosseinzadeh Lotfi, 2012. "An Application of Monte-Carlo-Based Sensitivity Analysis on the Overlap in Discriminant Analysis," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-14, November.
    4. Yu, Zhenhua & Arif, Robia & Fahmy, Mohamed Abdelsabour & Sohail, Ayesha, 2021. "Self organizing maps for the parametric analysis of COVID-19 SEIRS delayed model," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Lamboni, Matieyendou, 2021. "Derivative-based integral equalities and inequality: A proxy-measure for sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 137-161.
    3. Soha Saad & Florence Ossart & Jean Bigeon & Etienne Sourdille & Harold Gance, 2021. "Global Sensitivity Analysis Applied to Train Traffic Rescheduling: A Comparative Study," Energies, MDPI, vol. 14(19), pages 1-29, October.
    4. Ayesha Sohail, 2023. "Genetic Algorithms in the Fields of Artificial Intelligence and Data Sciences," Annals of Data Science, Springer, vol. 10(4), pages 1007-1018, August.
    5. Lamboni, Matieyendou, 2022. "Weak derivative-based expansion of functions: ANOVA and some inequalities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 691-718.
    6. Cadero, A. & Aubry, A. & Brun, F. & Dourmad, J.Y. & Salaün, Y. & Garcia-Launay, F., 2018. "Global sensitivity analysis of a pig fattening unit model simulating technico-economic performance and environmental impacts," Agricultural Systems, Elsevier, vol. 165(C), pages 221-229.
    7. Lamboni, Matieyendou, 2020. "Derivative-based generalized sensitivity indices and Sobol’ indices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 236-256.
    8. Matieyendou Lamboni & Moez Sanaa & Fanny Tenenhaus‐Aziza, 2014. "Sensitivity Analysis for Critical Control Points Determination and Uncertainty Analysis to Link FSO and Process Criteria: Application to Listeria monocytogenes in Soft Cheese Made from Pasteurized Mil," Risk Analysis, John Wiley & Sons, vol. 34(4), pages 751-764, April.
    9. Zhang, Kaichao & Lu, Zhenzhou & Cheng, Kai & Wang, Laijun & Guo, Yanling, 2020. "Global sensitivity analysis for multivariate output model and dynamic models," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    11. Gamboa, Fabrice & Klein, Thierry & Lagnoux, Agnès & Moreno, Leonardo, 2021. "Sensitivity analysis in general metric spaces," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    12. Lamboni, Matieyendou & Kucherenko, Sergei, 2021. "Multivariate sensitivity analysis and derivative-based global sensitivity measures with dependent variables," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    13. Rouger, Baptiste & Goldringer, Isabelle & Barbillon, Pierre & Miramon, Anne & Naino Jika, Abdel Kader & Thomas, Mathieu, 2023. "Sensitivity analysis of a crop metapopulation model," Ecological Modelling, Elsevier, vol. 475(C).
    14. Xiong, Qingwen & Du, Peng & Deng, Jian & Huang, Daishun & Song, Gongle & Qian, Libo & Wu, Zenghui & Luo, Yuejian, 2022. "Global sensitivity analysis for nuclear reactor LBLOCA with time-dependent outputs," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    15. Marrel, A. & Marie, N. & De Lozzo, M., 2015. "Advanced surrogate model and sensitivity analysis methods for sodium fast reactor accident assessment," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 232-241.
    16. Li, Luyi & Lu, Zhenzhou & Wu, Danqing, 2016. "A new kind of sensitivity index for multivariate output," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 123-131.
    17. Guo, Qing & Liu, Yongshou & Chen, Bingqian & Yao, Qin, 2021. "A variable and mode sensitivity analysis method for structural system using a novel active learning Kriging model," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    18. Daniel W. Gladish & Ross Darnell & Peter J. Thorburn & Bhakti Haldankar, 2019. "Emulated Multivariate Global Sensitivity Analysis for Complex Computer Models Applied to Agricultural Simulators," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 130-153, March.
    19. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    20. Francisco A. Buendia-Hernandez & Maria J. Ortiz Bevia & Francisco J. Alvarez-Garcia & Antonio Ruizde Elvira, 2022. "Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors," IJERPH, MDPI, vol. 19(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:154:y:2022:i:c:s0960077921009723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.