IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224016803.html
   My bibliography  Save this article

Investigation of the combustion characteristics of a dual direct injection fuel (diesel-propane) strategy on a rapid compression expansion machine

Author

Listed:
  • Setiawan, Ardhika
  • Lim, Ocktaeck

Abstract

For internal combustion engines, liquid petroleum gas (LPG) is a promising alternative fuel due to its typical specific calorific value. A rapid compression and expansion machine (RCEM) that resembles a compression ignition (CI) engine has been the subject of experimental research using a dual direct injection fuel. For this application, 10 %–100 % diesel-propane (DP) is applied based on the percentage of the low heating value (LHV) with the propane injection timing varying from 0° to 40° before top dead center and maintaining the diesel injection timing at 10° before top dead center (BTDC). The compression ratio was varied between 17 and 19 by adjusting the connecting rod of the RCEM. The outcome indicates that at the compression ratio of 17, propane promoted no auto-ignition. Meanwhile, at a compression ratio (CR) of 19, the auto-ignition was enhanced and occurred earlier as the amount of propane increased. However, a longer ignition delay was produced as the propane fraction was above 60 %. The highest indicated thermal efficiency (ITE) was produced at a propane fraction of 40 % at 40oBTDC. At propane fractions greater than 60 %, the highest efficiency was achieved at 20°-30oBTDC start of injection (SOI) of propane for both CR 17 and 19.

Suggested Citation

  • Setiawan, Ardhika & Lim, Ocktaeck, 2024. "Investigation of the combustion characteristics of a dual direct injection fuel (diesel-propane) strategy on a rapid compression expansion machine," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224016803
    DOI: 10.1016/j.energy.2024.131907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224016803
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miller Jothi, N.K. & Nagarajan, G. & Renganarayanan, S., 2007. "Experimental studies on homogeneous charge CI engine fueled with LPG using DEE as an ignition enhancer," Renewable Energy, Elsevier, vol. 32(9), pages 1581-1593.
    2. Lim, Cheolsoo & Kim, Daigon & Song, Changkeun & Kim, Jeongsoo & Han, Jinseok & Cha, Jun-Seok, 2015. "Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases," Applied Energy, Elsevier, vol. 139(C), pages 17-29.
    3. Yang, Kailin & Wang, Zhongshu & Zhang, Kechao & Wang, Dan & Xie, Fangxi & Xu, Yun & Yang, Kaiqiang, 2023. "Impact of natural gas injection timing on the combustion and emissions performance of a dual-direct-injection diesel/natural gas engine," Energy, Elsevier, vol. 270(C).
    4. Lee, Jeongwoo & Chu, Sanghyun & Cha, Jaehyuk & Choi, Hoimyung & Min, Kyoungdoug, 2015. "Effect of the diesel injection strategy on the combustion and emissions of propane/diesel dual fuel premixed charge compression ignition engines," Energy, Elsevier, vol. 93(P1), pages 1041-1052.
    5. Jeon, Joonho & Park, Sungwook, 2015. "Effects of pilot injection strategies on the flame temperature and soot distributions in an optical CI engine fueled with biodiesel and conventional diesel," Applied Energy, Elsevier, vol. 160(C), pages 581-591.
    6. Ayat Gharehghani & Alireza Kakoee & Amin Mahmoudzadeh Andwari & Thanos Megaritis & Apostolos Pesyridis, 2021. "Numerical Investigation of an RCCI Engine Fueled with Natural Gas/Dimethyl-Ether in Various Injection Strategies," Energies, MDPI, vol. 14(6), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kacem, Sahar Hadj & Jemni, Mohamed Ali & Driss, Zied & Abid, Mohamed Salah, 2016. "The effect of H2 enrichment on in-cylinder flow behavior, engine performances and exhaust emissions: Case of LPG-hydrogen engine," Applied Energy, Elsevier, vol. 179(C), pages 961-971.
    2. Lee, Jeongwoo & Chu, Sanghyun & Lim, Donghyun & Jung, Hyunsung & Chi, Yohan & Min, Kyoungdoug, 2022. "Comparison of combustion and emission characteristics under single-fueled and dual-fueled conditions with premixed compression ignition," Energy, Elsevier, vol. 241(C).
    3. Wei, Zhilong & Zhen, Haisheng & Leung, Chunwah & Cheung, Chunshun & Huang, Zuohua, 2020. "Effects of unburned gases velocity on the CO/NO2/NOx formations and overall emissions of laminar premixed biogas-hydrogen impinging flame," Energy, Elsevier, vol. 196(C).
    4. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Menaz Ahamed & Apostolos Pesyridis & Jabraeil Ahbabi Saray & Amin Mahmoudzadeh Andwari & Ayat Gharehghani & Srithar Rajoo, 2023. "Comparative Assessment of sCO2 Cycles, Optimal ORC, and Thermoelectric Generators for Exhaust Waste Heat Recovery Applications from Heavy-Duty Diesel Engines," Energies, MDPI, vol. 16(11), pages 1-21, May.
    6. Inmo Youn & Joonho Jeon, 2022. "Combustion Performance and Low NOx Emissions of a Dimethyl Ether Compression-Ignition Engine at High Injection Pressure and High Exhaust Gas Recirculation Rate," Energies, MDPI, vol. 15(5), pages 1-11, March.
    7. Zhilong Wei & Lei Wang & Hu Liu & Zihao Liu & Haisheng Zhen, 2021. "Numerical Investigation on the Flame Structure and CO/NO Formations of the Laminar Premixed Biogas–Hydrogen Impinging Flame in the Wall Vicinity," Energies, MDPI, vol. 14(21), pages 1-16, November.
    8. Gillespie, Fiona & Metcalfe, Wayne K. & Dirrenberger, Patricia & Herbinet, Olivier & Glaude, Pierre-Alexandre & Battin-Leclerc, Frédérique & Curran, Henry J., 2012. "Measurements of flat-flame velocities of diethyl ether in air," Energy, Elsevier, vol. 43(1), pages 140-145.
    9. Zhaojie Shen & Wenzheng Cui & Xiaodong Ju & Zhongchang Liu & Shaohua Wu & Jianguo Yang, 2018. "Numerical Investigation on Effects of Assigned EGR Stratification on a Heavy Duty Diesel Engine with Two-Stage Fuel Injection," Energies, MDPI, vol. 11(3), pages 1-14, February.
    10. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    11. Mei, Qihao & Liu, Long & Abu Mansor, Mohd Radzi, 2024. "Investigation on spray combustion modeling for performance analysis of future low- and zero-carbon DI engine," Energy, Elsevier, vol. 302(C).
    12. Xiao, Gang & Jia, Ming & Wang, Tianyou, 2016. "Large eddy simulation of n-heptane spray combustion in partially premixed combustion regime with linear eddy model," Energy, Elsevier, vol. 97(C), pages 20-35.
    13. Huang, Haozhong & Huang, Rong & Guo, Xiaoyu & Pan, Mingzhang & Teng, Wenwen & Chen, Yingjie & Li, Zhongju, 2019. "Effects of pine oil additive and pilot injection strategies on energy distribution, combustion and emissions in a diesel engine at low-load condition," Applied Energy, Elsevier, vol. 250(C), pages 185-197.
    14. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    15. Tyler Simpson & Christopher Depcik, 2022. "Multiple Fuel Injection Strategies for Compression Ignition Engines," Energies, MDPI, vol. 15(14), pages 1-29, July.
    16. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Wu, Horng-Wen & Fan, Chen-Ming & He, Jian-Yi & Hsu, Tzu-Ting, 2017. "Optimal factors estimation for diesel/methanol engines changing methanol injection timing and inlet air temperature," Energy, Elsevier, vol. 141(C), pages 1819-1828.
    19. Ding, Botao & Wang, Ying & Bai, Yuanqi & Xie, Manyao & Chen, Jinge, 2024. "Effects of PODE substitution rate and fuel injection timing on combustion, emission characteristic and energy balance in PODE-gasoline dual direct-injection engine," Energy, Elsevier, vol. 294(C).
    20. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224016803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.