IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5161-d864113.html
   My bibliography  Save this article

Sizing Assessment of Islanded Microgrids Considering Total Investment Cost and Tax Benefits in Colombia

Author

Listed:
  • Wilmer Ropero-Castaño

    (Research Group on Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia)

  • Nicolás Muñoz-Galeano

    (Research Group on Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia)

  • Eduardo F. Caicedo-Bravo

    (Grupo de Investigación en Percepción y Sistemas Inteligentes (PSI), Escuela de Ingeniería Eléctrica y Electrónica, Universidad del Valle (Univalle), Calle 13 No 100-00, Cali 760001, Colombia)

  • Pablo Maya-Duque

    (Grupo de Investigación ALIADO, Departamento de Ingeniería Industrial, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia)

  • Jesús M. López-Lezama

    (Research Group on Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia)

Abstract

This paper deals with the optimal sizing of islanded microgrids (MGs), which use diesel generators to supply energy in off-grid areas. The MG under study integrates photovoltaic (PV) and diesel generation, a battery energy storage System (BESS), and an inverter for the connection between AC and DC voltage buses. Levelised cost of energy (LCOE) and annual system cost (ASC) are considered economic indicators, while the loss of power supply probability (LPSP) is used as a reliability indicator. Fiscal incentives such as the tax benefits and accelerated depreciation applied in Colombia are considered for the optimally sizing of each MG element. Solar measurements were taken at a weather station located in the main campus of Universidad de Antioquia in Medellin, Colombia at a latitude of 6.10 and longitude of −75.38. The objective function is the minimization of the total energy delivered from the power sources that successfully meets the load. The model was implemented in Python programming language considering several scenarios. Two cases were evaluated: the first one considered PV panels, a BESS and a diesel generator, while the second one only considered PV panels and a BESS. The option that does not include the diesel generator turned out to be the most expensive, since additional PV and BESS resources are required to meet the load profile. Furthermore, it was found that the LCOE was lower when tax benefits were taken into account.

Suggested Citation

  • Wilmer Ropero-Castaño & Nicolás Muñoz-Galeano & Eduardo F. Caicedo-Bravo & Pablo Maya-Duque & Jesús M. López-Lezama, 2022. "Sizing Assessment of Islanded Microgrids Considering Total Investment Cost and Tax Benefits in Colombia," Energies, MDPI, vol. 15(14), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5161-:d:864113
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5161/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5161/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ricardo Echeverri Mart nez & Eduardo Caicedo Bravo & Wilfredo Alfonso Morales & Juan David Garcia-Racines, 2020. "A Bi-level Multi-objective Optimization Model for the Planning, Design and Operation of Smart Grid Projects. Case Study: An Islanded Microgrid," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 325-341.
    2. Haghi, Ehsan & Raahemifar, Kaamran & Fowler, Michael, 2018. "Investigating the effect of renewable energy incentives and hydrogen storage on advantages of stakeholders in a microgrid," Energy Policy, Elsevier, vol. 113(C), pages 206-222.
    3. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García-García, Jersson & Sarmiento-Ariza, Yennifer & Campos-Rodríguez, Lizeth & Rey-López, Juan & Osma-Pinto, German, 2023. "Evaluation of tax incentives on the financial viability of microgrids," Applied Energy, Elsevier, vol. 329(C).
    2. Abdullah Alamri & Abdulrahman AlKassem & Azeddine Draou, 2023. "Composite Demand-Based Energy Storage Sizing for an Isolated Microgrid System," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    3. Asrin Seyedzahedi & Salah Bahramara, 2023. "Facilitating Investment in Photovoltaic Systems in Iran Considering Time-of-Use Feed-in-Tariff and Carbon Market," Energies, MDPI, vol. 16(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng Xu & Yong Long, 2019. "The Impact of Government Subsidy on Renewable Microgrid Investment Considering Double Externalities," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    2. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    3. Nian Liu & Cheng Wang & Minyang Cheng & Jie Wang, 2016. "A Privacy-Preserving Distributed Optimal Scheduling for Interconnected Microgrids," Energies, MDPI, vol. 9(12), pages 1-18, December.
    4. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    5. Jie Zhang & Majed Alharthi & Qaiser Abbas & Weiqing Li & Muhammad Mohsin & Khan Jamal & Farhad Taghizadeh-Hesary, 2020. "Reassessing the Environmental Kuznets Curve in Relation to Energy Efficiency and Economic Growth," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    6. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    7. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    8. Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
    9. Wen, Shuli & Lan, Hai & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun & Cheng, Peng, 2016. "Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system," Applied Energy, Elsevier, vol. 175(C), pages 158-167.
    10. Haesung Jo & Jaemin Park & Insu Kim, 2021. "Environmentally Constrained Optimal Dispatch Method for Combined Cooling, Heating, and Power Systems Using Two-Stage Optimization," Energies, MDPI, vol. 14(14), pages 1-20, July.
    11. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
    12. Ben Christopher, S.J. & Carolin Mabel, M., 2020. "A bio-inspired approach for probabilistic energy management of micro-grid incorporating uncertainty in statistical cost estimation," Energy, Elsevier, vol. 203(C).
    13. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    14. Chabok, Hossein & Aghaei, Jamshid & Sheikh, Morteza & Roustaei, Mahmoud & Zare, Mohsen & Niknam, Taher & Lehtonen, Matti & Shafi-khah, Miadreza & Catalão, João P.S., 2022. "Transmission-constrained optimal allocation of price-maker wind-storage units in electricity markets," Applied Energy, Elsevier, vol. 310(C).
    15. Jung, Seunghoon & Jeoung, Jaewon & Kang, Hyuna & Hong, Taehoon, 2021. "Optimal planning of a rooftop PV system using GIS-based reinforcement learning," Applied Energy, Elsevier, vol. 298(C).
    16. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    17. Yun, Na, 2023. "Nexus among carbon intensity and natural resources utilization on economic development: Econometric analysis from China," Resources Policy, Elsevier, vol. 83(C).
    18. Jiang, Jianhua & Zhou, Renjie & Xu, Hao & Wang, Hao & Wu, Ping & Wang, Zhuo & Li, Jian, 2022. "Optimal sizing, operation strategy and case study of a grid-connected solid oxide fuel cell microgrid," Applied Energy, Elsevier, vol. 307(C).
    19. Stefano Bianchi & Allegra De Filippo & Sandro Magnani & Gabriele Mosaico & Federico Silvestro, 2021. "VIRTUS Project: A Scalable Aggregation Platform for the Intelligent Virtual Management of Distributed Energy Resources," Energies, MDPI, vol. 14(12), pages 1-31, June.
    20. Polamarasetty P Kumar & Ramakrishna S. S. Nuvvula & Md. Alamgir Hossain & SK. A. Shezan & Vishnu Suresh & Michal Jasinski & Radomir Gono & Zbigniew Leonowicz, 2022. "Optimal Operation of an Integrated Hybrid Renewable Energy System with Demand-Side Management in a Rural Context," Energies, MDPI, vol. 15(14), pages 1-50, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5161-:d:864113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.