IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1517-d1034068.html
   My bibliography  Save this article

Composite Demand-Based Energy Storage Sizing for an Isolated Microgrid System

Author

Listed:
  • Abdullah Alamri

    (Department of Electrical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia)

  • Abdulrahman AlKassem

    (Department of Electrical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia)

  • Azeddine Draou

    (Department of Electrical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia)

Abstract

This paper presents a comprehensive model for optimal energy storage system (ESS) design for an isolated microgrid. The model presented is a mixed integer linear program (MILP) that considers seasonal varying generation (VG) demand, more specifically seasonal solar cell generator (SCG) demand, SCG maintenance (failure and restoration) rates, and practical operation of conventional generation (CG) while satisfying the required demand and reserve. The model is based on unit commitment (UC) to simulate real operations and physical constraints of CG units, the power balance, and reserve requirements. The objective function aims at minimizing the associated cost of CG, namely, production (fuel), costs of startup and shutdown procedures, and the investment cost of power and energy. The proposed model is assessed on a case study system consisting of multiple SCGs in addition to CG to meet a specific demand. The proposed model showed that the ESS sizing when considering Li-Ion technology and a SCG penetration of 25% was on average approximately 3 MWh and 1.70 MW. Meeting the demand and reserve requirements were the two major constraints when determining the optimal ESS sizing. Moreover, introducing the ESS substantially reduced the operating cost of the system.

Suggested Citation

  • Abdullah Alamri & Abdulrahman AlKassem & Azeddine Draou, 2023. "Composite Demand-Based Energy Storage Sizing for an Isolated Microgrid System," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1517-:d:1034068
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wilmer Ropero-Castaño & Nicolás Muñoz-Galeano & Eduardo F. Caicedo-Bravo & Pablo Maya-Duque & Jesús M. López-Lezama, 2022. "Sizing Assessment of Islanded Microgrids Considering Total Investment Cost and Tax Benefits in Colombia," Energies, MDPI, vol. 15(14), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García-García, Jersson & Sarmiento-Ariza, Yennifer & Campos-Rodríguez, Lizeth & Rey-López, Juan & Osma-Pinto, German, 2023. "Evaluation of tax incentives on the financial viability of microgrids," Applied Energy, Elsevier, vol. 329(C).
    2. Asrin Seyedzahedi & Salah Bahramara, 2023. "Facilitating Investment in Photovoltaic Systems in Iran Considering Time-of-Use Feed-in-Tariff and Carbon Market," Energies, MDPI, vol. 16(3), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1517-:d:1034068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.