IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4792-d851911.html
   My bibliography  Save this article

Possible Scenarios for Reduction of Carbon Dioxide Emissions in Serbia by Generating Electricity from Natural Gas

Author

Listed:
  • Dardan Klimenta

    (Faculty of Technical Sciences, University of Priština in Kosovska Mitrovica, Kneza Miloša 7, 38220 Kosovska Mitrovica, Serbia)

  • Marija Mihajlović

    (Faculty of Geography, University of Belgrade, Studentski Trg 3, 11000 Belgrade, Serbia)

  • Ivan Ristić

    (Freelance Consultant in the Field of Electric Power Engineering, Generala Štefanika 18, 11041 Belgrade, Serbia)

  • Darius Andriukaitis

    (Department of Electronics Engineering, Kaunas University of Technology, Studentu 50-438, 51368 Kaunas, Lithuania)

Abstract

The main purpose of this paper is to develop possible scenarios for reducing carbon dioxide (CO 2 ) emissions in Serbia by switching from coal-fired to natural gas-fired electricity generation by the end of 2050. Accordingly, the challenges are to establish scenarios and identify measures that are best suited to all Western Balkan countries. In particular, this paper proposes a number of energy mix scenarios that offer some options for reducing CO 2 emissions while maintaining an economic way of consumption. Projections of these reduction scenarios are obtained by combining the Kaya identity with the emission factor method. A simplified methodology based on sensitivity analysis is used as a source of data to estimate the nonstatistical uncertainty limits for the projections of the reduction scenarios. The sensitivity analysis is carried out using historical data from Serbia for the period from 1990 to 2019. In addition, a direct verification of the proposed methodology is performed based on historical data for 2020. The developed scenarios 1 and 2 show that CO 2 emissions could be reduced by 10.94% and up to 74.44% from baseline in 1990, respectively. The obtained results are also contrasted with the data available for some other countries with similar experiences. Finally, it is found that the developed scenarios are achievable only at significantly decreased levels of coal-fired electricity generation.

Suggested Citation

  • Dardan Klimenta & Marija Mihajlović & Ivan Ristić & Darius Andriukaitis, 2022. "Possible Scenarios for Reduction of Carbon Dioxide Emissions in Serbia by Generating Electricity from Natural Gas," Energies, MDPI, vol. 15(13), pages 1-33, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4792-:d:851911
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amir Shahin Kamjou & Carol J. Miller & Mahdi Rouholamini & Caisheng Wang, 2021. "Comparison between Historical and Real-Time Techniques for Estimating Marginal Emissions Attributed to Electricity Generation," Energies, MDPI, vol. 14(17), pages 1-15, August.
    2. Yamaji, Kenji & Matsuhashi, Ryuji & Nagata, Yutaka & Kaya, Yoichi, 1993. "A study on economic measures for CO2 reduction in Japan," Energy Policy, Elsevier, vol. 21(2), pages 123-132, February.
    3. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Dong, Kangyin & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "Does natural gas consumption mitigate CO2 emissions: Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 419-429.
    5. Graus, Wina & Worrell, Ernst, 2011. "Methods for calculating CO2 intensity of power generation and consumption: A global perspective," Energy Policy, Elsevier, vol. 39(2), pages 613-627, February.
    6. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Dastan, Seyit Ali, 2018. "Negotiation of a cross-border natural gas pipeline: An analytical contribution to the discussions on Turkish Stream," Energy Policy, Elsevier, vol. 120(C), pages 749-760.
    8. YoungSeok Hwang & Jung-Sup Um & JunHwa Hwang & Stephan Schlüter, 2020. "Evaluating the Causal Relations between the Kaya Identity Index and ODIAC-Based Fossil Fuel CO 2 Flux," Energies, MDPI, vol. 13(22), pages 1-20, November.
    9. Enno Schröder & Servaas Storm, 2020. "Economic Growth and Carbon Emissions: The Road to “Hothouse Earth” is Paved with Good Intentions," International Journal of Political Economy, Taylor & Francis Journals, vol. 49(2), pages 153-173, April.
    10. Hassan Ali & Han Phoumin & Steven R. Weller & Beni Suryadi, 2021. "Expediting Transition Towards HELE Coal-Fired Electricity Generation Technologies in Southeast Asia: A Comparative Economic Analysis of HELE and Subcritical Coal-Fired Technologies," Economics, Law, and Institutions in Asia Pacific, in: Han Phoumin & Farhad Taghizadeh-Hesary & Fukunari Kimura & Jun Arima (ed.), Energy Sustainability and Climate Change in ASEAN, chapter 0, pages 147-165, Springer.
    11. Ofosu-Adarkwa, Jeffrey & Xie, Naiming & Javed, Saad Ahmed, 2020. "Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1,N) model and emissions' technical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    12. Clark, Richard & Zucker, Noah & Urpelainen, Johannes, 2020. "The future of coal-fired power generation in Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    13. Eguchi, Shogo & Takayabu, Hirotaka & Lin, Chen, 2021. "Sources of inefficient power generation by coal-fired thermal power plants in China: A metafrontier DEA decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Yang, Ying & Campana, Pietro Elia & Yan, Jinyue, 2020. "Potential of unsubsidized distributed solar PV to replace coal-fired power plants, and profits classification in Chinese cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kartal, Mustafa Tevfik & Pata, Ugur Korkut & Kılıç Depren, Serpil & Depren, Özer, 2023. "Effects of possible changes in natural gas, nuclear, and coal energy consumption on CO2 emissions: Evidence from France under Russia’s gas supply cuts by dynamic ARDL simulations approach," Applied Energy, Elsevier, vol. 339(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruan, Shuai & Wan, Guofeng & Le, Xilin & Zhang, Shanshan & Yu, Chao, 2023. "Combining the role of the banking sector and natural resource utilization on green economic development: Evidence from China," Resources Policy, Elsevier, vol. 83(C).
    2. Kartal, Mustafa Tevfik & Pata, Ugur Korkut & Kılıç Depren, Serpil & Depren, Özer, 2023. "Effects of possible changes in natural gas, nuclear, and coal energy consumption on CO2 emissions: Evidence from France under Russia’s gas supply cuts by dynamic ARDL simulations approach," Applied Energy, Elsevier, vol. 339(C).
    3. Rahman, Abidur & Farrok, Omar & Haque, Md Mejbaul, 2022. "Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Seun Damola Oladipupo & Ephraim Bonah Agyekum & Arunkumar Jayakumar & Nallapaneni Manoj Kumar, 2021. "Dominance of Fossil Fuels in Japan’s National Energy Mix and Implications for Environmental Sustainability," IJERPH, MDPI, vol. 18(14), pages 1-20, July.
    5. Toshiyuki Sueyoshi & Ruchuan Zhang & Aijun Li, 2023. "Measuring and Analyzing Operational Efficiency and Returns to Scale in a Time Horizon: Assessment of China’s Electricity Generation & Transmission at Provincial Levels," Energies, MDPI, vol. 16(2), pages 1-23, January.
    6. Du, Hua & Han, Qi & de Vries, Bauke & Sun, Jun, 2024. "Community solar PV adoption in residential apartment buildings: A case study on influencing factors and incentive measures in Wuhan," Applied Energy, Elsevier, vol. 354(PA).
    7. Tao, Kejun & Zhao, Jinghao & Tao, Ye & Qi, Qingqing & Tian, Yajun, 2024. "Operational day-ahead photovoltaic power forecasting based on transformer variant," Applied Energy, Elsevier, vol. 373(C).
    8. Aktar, Asikha & Alam, Md. Mahmudul & Harun, Mukaramah, 2022. "Energy Efficiency Policies in Malaysia: A Critical Evaluation from the Sustainable Development Perspective," OSF Preprints 9cf3a, Center for Open Science.
    9. Nakamoto, Yuya & Eguchi, Shogo & Takayabu, Hirotaka, 2024. "Efficiency and benchmarks for photovoltaic power generation amid uncertain conditions," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    10. Ye, Li & Yang, Deling & Dang, Yaoguo & Wang, Junjie, 2022. "An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions," Energy, Elsevier, vol. 249(C).
    11. Eleftherios Thalassinos & Marta Kadłubek & Le Minh Thong & Tran Van Hiep & Erginbay Ugurlu, 2022. "Managerial Issues Regarding the Role of Natural Gas in the Transition of Energy and the Impact of Natural Gas Consumption on the GDP of Selected Countries," Resources, MDPI, vol. 11(5), pages 1-22, April.
    12. Yang, Yi & Yuan, Zhuqing & Yang, Shengnan, 2022. "Difference in the drivers of industrial carbon emission costs determines the diverse policies in middle-income regions: A case of northwestern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Lijuan Zhang & Tatyana Ponomarenko, 2023. "Directions for Sustainable Development of China’s Coal Industry in the Post-Epidemic Era," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    14. Hüseyin İçen, 2020. "Environmental Kuznets Curve in D8 Countries: Evidence from Panel Cointegration," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(32), pages 85-96, June.
    15. Seong-Jae Seo & Ju-Hee Kim & Seung-Hoon Yoo, 2020. "Public Preference for Increasing Natural Gas Generation for Reducing CO 2 Emissions in South Korea," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    16. Cao, Feifei, 2023. "Digital financial innovation and renewable electrification: A step toward zero carbon nexus," Renewable Energy, Elsevier, vol. 215(C).
    17. Li, Wei & Lu, Can, 2019. "The multiple effectiveness of state natural gas consumption constraint policies for achieving sustainable development targets in China," Applied Energy, Elsevier, vol. 235(C), pages 685-698.
    18. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    19. Wu, Dong & Geng, Yong & Pan, Hengyu, 2021. "Whether natural gas consumption bring double dividends of economic growth and carbon dioxide emissions reduction in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4792-:d:851911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.