IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4609-d846422.html
   My bibliography  Save this article

Implementation and Critical Analysis of the Active Phase Jump with Positive Feedback Anti-Islanding Algorithm

Author

Listed:
  • Ênio Costa Resende

    (Faculty of Electrical Engineering, Federal University of Uberlandia, Uberlandia 38400-902, Brazil)

  • Henrique Tannús de Moura Carvalho

    (Faculty of Electrical Engineering, Federal University of Uberlandia, Uberlandia 38400-902, Brazil)

  • Luiz Carlos Gomes Freitas

    (Faculty of Electrical Engineering, Federal University of Uberlandia, Uberlandia 38400-902, Brazil)

Abstract

The protection against the unintentional islanding of Grid-Tied inverters is an important electrical security issue addressed by the main Standards. This concern is justified in face of the fact that unintentional islanding can lead to abrupt variations of voltage and frequency, electrical damages, professional accidents, power quality degradation, and out-of-phase reclosure. In response to the islanding concern, the literature has proposed several Anti-Islanding Protection (AIP) schemes that can be divided in passive and active methods. Many of the active AIP is based on the insertion of some disturbance in the inverter current in order to deviate the frequency out of the allowed thresholds, tripping the inverter internal disconnection system. Thus, the main objective of this paper is to analyze the performance of the Active Phase Jump with Positive Feedback (APJPF) algorithm compared to other well-known frequency drift-based solutions. More than that, this work covers the Non-Detection Zone (NDZ) problem, analyzing its main mapping methodologies and the normative requirements, exposing the minimum normative recommendations a given AIP must reach to be considered functional. The last contributions of this paper are the proposal of a parametrization criterion for the Active Frequency Drift with Pulsating Chopping Factor (AFDPCF) and for the APJPF.

Suggested Citation

  • Ênio Costa Resende & Henrique Tannús de Moura Carvalho & Luiz Carlos Gomes Freitas, 2022. "Implementation and Critical Analysis of the Active Phase Jump with Positive Feedback Anti-Islanding Algorithm," Energies, MDPI, vol. 15(13), pages 1-27, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4609-:d:846422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4609/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4609/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed G. Abokhalil & Ahmed Bilal Awan & Abdel-Rahman Al-Qawasmi, 2018. "Comparative Study of Passive and Active Islanding Detection Methods for PV Grid-Connected Systems," Sustainability, MDPI, vol. 10(6), pages 1-15, May.
    2. Karthikeyan Subramanian & Ashok Kumar Loganathan, 2020. "Islanding Detection Using a Micro-Synchrophasor for Distribution Systems with Distributed Generation," Energies, MDPI, vol. 13(19), pages 1-31, October.
    3. José Antonio Cebollero & David Cañete & Susana Martín-Arroyo & Miguel García-Gracia & Helder Leite, 2022. "A Survey of Islanding Detection Methods for Microgrids and Assessment of Non-Detection Zones in Comparison with Grid Codes," Energies, MDPI, vol. 15(2), pages 1-30, January.
    4. Min-Sung Kim & Raza Haider & Gyu-Jung Cho & Chul-Hwan Kim & Chung-Yuen Won & Jong-Seo Chai, 2019. "Comprehensive Review of Islanding Detection Methods for Distributed Generation Systems," Energies, MDPI, vol. 12(5), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szymon Barczentewicz & Tomasz Lerch & Andrzej Bień & Krzysztof Duda, 2021. "Laboratory Evaluation of a Phasor-Based Islanding Detection Method," Energies, MDPI, vol. 14(7), pages 1-17, April.
    2. Sowmya Ramachandradurai & Narayanan Krishnan & Natarajan Prabaharan, 2022. "Unintentional Passive Islanding Detection and Prevention Method with Reduced Non-Detection Zones," Energies, MDPI, vol. 15(9), pages 1-26, April.
    3. Abdulaziz Almutairi & Ahmed G. Abo-Khalil & Khairy Sayed & Naif Albagami, 2020. "MPPT for a PV Grid-Connected System to Improve Efficiency under Partial Shading Conditions," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    4. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    5. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    6. Ahmed G. Abo-Khalil & Walied Alharbi & Abdel-Rahman Al-Qawasmi & Mohammad Alobaid & Ibrahim M. Alarifi, 2021. "Maximum Power Point Tracking of PV Systems under Partial Shading Conditions Based on Opposition-Based Learning Firefly Algorithm," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    7. Boscaino, Valeria & Ditta, Vito & Marsala, Giuseppe & Panzavecchia, Nicola & Tinè, Giovanni & Cosentino, Valentina & Cataliotti, Antonio & Di Cara, Dario, 2024. "Grid-connected photovoltaic inverters: Grid codes, topologies and control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Marino Coppola & Pierluigi Guerriero & Adolfo Dannier & Santolo Daliento & Davide Lauria & Andrea Del Pizzo, 2020. "Control of a Fault-Tolerant Photovoltaic Energy Converter in Island Operation," Energies, MDPI, vol. 13(12), pages 1-18, June.
    9. Juan Roberto Lopez & Luis Ibarra & Pedro Ponce & Arturo Molina, 2021. "A Decentralized Passive Islanding Detection Method Based on the Variations of Estimated Droop Characteristics," Energies, MDPI, vol. 14(22), pages 1-19, November.
    10. Faisal Mumtaz & Kashif Imran & Abdullah Abusorrah & Syed Basit Ali Bukhari, 2023. "An Extensive Overview of Islanding Detection Strategies of Active Distributed Generations in Sustainable Microgrids," Sustainability, MDPI, vol. 15(5), pages 1-19, March.
    11. Mazaher Karimi & Mohammad Farshad & Qiteng Hong & Hannu Laaksonen & Kimmo Kauhaniemi, 2020. "An Islanding Detection Technique for Inverter-Based Distributed Generation in Microgrids," Energies, MDPI, vol. 14(1), pages 1-18, December.
    12. Rosa Anna Mastromauro, 2020. "Grid Synchronization and Islanding Detection Methods for Single-Stage Photovoltaic Systems," Energies, MDPI, vol. 13(13), pages 1-25, July.
    13. Nitin Kumar Kulkarni & Mohan Khedkar & Chandrashekhar Narayan Bhende & Sunil Kumar Singh, 2022. "Prioritization of Passive Parameters from Modified Averaging Approach-Based Computation (MAAC) Methodology for Ascertaining Formation of Single and Multi-Location Unintentional Islands," Energies, MDPI, vol. 15(17), pages 1-25, September.
    14. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "Power Flow Control Strategy and Reliable DC-Link Voltage Restoration for DC Microgrid under Grid Fault Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    15. Md Mainul Islam & Mahmood Nagrial & Jamal Rizk & Ali Hellany, 2021. "General Aspects, Islanding Detection, and Energy Management in Microgrids: A Review," Sustainability, MDPI, vol. 13(16), pages 1-45, August.
    16. Karthikeyan Subramanian & Ashok Kumar Loganathan, 2020. "Islanding Detection Using a Micro-Synchrophasor for Distribution Systems with Distributed Generation," Energies, MDPI, vol. 13(19), pages 1-31, October.
    17. Mezzour Ghita & Benhadou Siham & Medromi Hicham & Mounaam Amine, 2022. "HT-TPP: A Hybrid Twin Architecture for Thermal Power Plant Collaborative Condition Monitoring," Energies, MDPI, vol. 15(15), pages 1-38, July.
    18. da Silva Benedito, Ricardo & Zilles, Roberto & Pinho, João Tavares, 2021. "Overcoming the power factor apparent degradation of loads fed by photovoltaic distributed generators," Renewable Energy, Elsevier, vol. 164(C), pages 1364-1375.
    19. Khan, Mohammed Ali & Haque, Ahteshamul & Kurukuru, V.S. Bharath & Saad, Mekhilef, 2022. "Islanding detection techniques for grid-connected photovoltaic systems-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Sowmya Ramachandradurai & Narayanan Krishnan & Gulshan Sharma & Pitshou N. Bokoro, 2023. "Islanding Detection with Reduced Non-Detection Zones and Restoration by Reconfiguration," Energies, MDPI, vol. 16(7), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4609-:d:846422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.