IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3035-d1108124.html
   My bibliography  Save this article

Islanding Detection with Reduced Non-Detection Zones and Restoration by Reconfiguration

Author

Listed:
  • Sowmya Ramachandradurai

    (Department of Electrical and Electronics Engineering, Sri Shakthi Institute of Engineering & Technology, Coimbatore 641062, India)

  • Narayanan Krishnan

    (Department of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613401, India)

  • Gulshan Sharma

    (Department of Electrical Engineering Technology, University of Johannesburg, Johannesburg 2006, South Africa)

  • Pitshou N. Bokoro

    (Department of Electrical Engineering Technology, University of Johannesburg, Johannesburg 2006, South Africa)

Abstract

The development and use of PV (Photovoltaic), Wind, and Hydro-based Distributed Generation (DG) is presently on the rise worldwide for improving stability and reliability, and reducing the power loss in the distribution system with reduced emission of harmful gases. A crucial issue addressed in this article, due to the increased penetration of DGs, is islanding operations. The detection of islanding is performed by a proposed v&f (voltage and frequency) index method. The reliability indices of the IEEE-33 and 118 radial bus distribution system after the detection of islanding by the proposed method is evaluated by considering the islanding issue as customer interruption. To mitigate the islanding, a reconfiguration strategy using Particle Swarm Optimization (PSO) is also performed and the proposed strategy is also evaluated with the conventional reconfiguration strategy of the distribution system.

Suggested Citation

  • Sowmya Ramachandradurai & Narayanan Krishnan & Gulshan Sharma & Pitshou N. Bokoro, 2023. "Islanding Detection with Reduced Non-Detection Zones and Restoration by Reconfiguration," Energies, MDPI, vol. 16(7), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3035-:d:1108124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3035/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3035/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Umair Shahid & Thamer Alquthami & Abubakar Siddique & Hafiz Mudassir Munir & Saqlain Abbas & Zulkarnain Abbas, 2021. "RES Based Islanded DC Microgrid with Enhanced Electrical Network Islanding Detection," Energies, MDPI, vol. 14(24), pages 1-18, December.
    2. Ahmed G. Abokhalil & Ahmed Bilal Awan & Abdel-Rahman Al-Qawasmi, 2018. "Comparative Study of Passive and Active Islanding Detection Methods for PV Grid-Connected Systems," Sustainability, MDPI, vol. 10(6), pages 1-15, May.
    3. Juan Roberto Lopez & Luis Ibarra & Pedro Ponce & Arturo Molina, 2021. "A Decentralized Passive Islanding Detection Method Based on the Variations of Estimated Droop Characteristics," Energies, MDPI, vol. 14(22), pages 1-19, November.
    4. Ali Selim & Salah Kamel & Amal A. Mohamed & Ehab E. Elattar, 2021. "Optimal Allocation of Multiple Types of Distributed Generations in Radial Distribution Systems Using a Hybrid Technique," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sowmya Ramachandradurai & Narayanan Krishnan & Natarajan Prabaharan, 2022. "Unintentional Passive Islanding Detection and Prevention Method with Reduced Non-Detection Zones," Energies, MDPI, vol. 15(9), pages 1-26, April.
    2. Abdulaziz Almutairi & Ahmed G. Abo-Khalil & Khairy Sayed & Naif Albagami, 2020. "MPPT for a PV Grid-Connected System to Improve Efficiency under Partial Shading Conditions," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    3. Ahmed G. Abo-Khalil & Walied Alharbi & Abdel-Rahman Al-Qawasmi & Mohammad Alobaid & Ibrahim M. Alarifi, 2021. "Maximum Power Point Tracking of PV Systems under Partial Shading Conditions Based on Opposition-Based Learning Firefly Algorithm," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    4. Elseify, Mohamed A. & Hashim, Fatma A. & Hussien, Abdelazim G. & Kamel, Salah, 2024. "Single and multi-objectives based on an improved golden jackal optimization algorithm for simultaneous integration of multiple capacitors and multi-type DGs in distribution systems," Applied Energy, Elsevier, vol. 353(PA).
    5. Ahmed M. Mahmoud & Shady H. E. Abdel Aleem & Almoataz Y. Abdelaziz & Mohamed Ezzat, 2022. "Towards Maximizing Hosting Capacity by Optimal Planning of Active and Reactive Power Compensators and Voltage Regulators: Case Study," Sustainability, MDPI, vol. 14(20), pages 1-34, October.
    6. Rosa Anna Mastromauro, 2020. "Grid Synchronization and Islanding Detection Methods for Single-Stage Photovoltaic Systems," Energies, MDPI, vol. 13(13), pages 1-25, July.
    7. Juan R. Lopez & Jose de Jesus Camacho & Pedro Ponce & Brian MacCleery & Arturo Molina, 2022. "A Real-Time Digital Twin and Neural Net Cluster-Based Framework for Faults Identification in Power Converters of Microgrids, Self Organized Map Neural Network," Energies, MDPI, vol. 15(19), pages 1-25, October.
    8. Muhammad Shahroz Sultan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Dong Ryeol Shin, 2023. "Multi-Objective Optimization-Based Approach for Optimal Allocation of Distributed Generation Considering Techno-Economic and Environmental Indices," Sustainability, MDPI, vol. 15(5), pages 1-30, February.
    9. Zeeshan Memon Anjum & Dalila Mat Said & Mohammad Yusri Hassan & Zohaib Hussain Leghari & Gul Sahar, 2022. "Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-38, April.
    10. Ramdhan Halid Siregar & Yuwaldi Away & Tarmizi & Akhyar, 2023. "Minimizing Power Losses for Distributed Generation (DG) Placements by Considering Voltage Profiles on Distribution Lines for Different Loads Using Genetic Algorithm Methods," Energies, MDPI, vol. 16(14), pages 1-25, July.
    11. Muhammad Waqas Khalil & Abdullah Altamimi & Syed Ali Abbas Kazmi & Zafar A. Khan & Dong Ryeol Shin, 2022. "Integration of Distributed Generations in Smart Distribution Networks Using Multi-Criteria Based Sustainable Planning Approach," Sustainability, MDPI, vol. 15(1), pages 1-40, December.
    12. Ashraf Ramadan & Mohamed Ebeed & Salah Kamel & Ahmed M. Agwa & Marcos Tostado-Véliz, 2022. "The Probabilistic Optimal Integration of Renewable Distributed Generators Considering the Time-Varying Load Based on an Artificial Gorilla Troops Optimizer," Energies, MDPI, vol. 15(4), pages 1-22, February.
    13. Ênio Costa Resende & Henrique Tannús de Moura Carvalho & Luiz Carlos Gomes Freitas, 2022. "Implementation and Critical Analysis of the Active Phase Jump with Positive Feedback Anti-Islanding Algorithm," Energies, MDPI, vol. 15(13), pages 1-27, June.
    14. Umme Kulsum Jhuma & Shameem Ahmad & Tofael Ahmed, 2022. "A Novel Approach for Secure Hybrid Islanding Detection Considering the Dynamic Behavior of Power and Load in Electrical Distribution Networks," Sustainability, MDPI, vol. 14(19), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3035-:d:1108124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.