IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3038-d798663.html
   My bibliography  Save this article

Unintentional Passive Islanding Detection and Prevention Method with Reduced Non-Detection Zones

Author

Listed:
  • Sowmya Ramachandradurai

    (Department of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613401, India)

  • Narayanan Krishnan

    (Department of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613401, India)

  • Natarajan Prabaharan

    (Department of Electrical and Electronics Engineering, SASTRA Deemed to be University, Thanjavur 613401, India)

Abstract

Islanding detection and prevention are involved in tandem with the rise of large- and small-scale distribution grids. To detect islanded buses, either the voltage or the frequency variation has been considered in the literature. A modified passive islanding detection strategy that coordinates the V-F (voltage–frequency) index was developed to reduce the non-detection zones (NDZs), and an islanding operation is proposed in this article. Voltage and frequency were measured at each bus to check the violation limits by implementing the proposed strategy. The power mismatch was alleviated in the identified islands by installing a battery and a diesel generator, which prevented islanding events. The proposed strategy was studied on the three distinct IEEE radial bus distribution systems, namely, 33-, 69-, and 118-bus systems. The results obtained in the above-mentioned IEEE bus systems were promising when the proposed strategy was implemented. The results of the proposed strategy were compared with those of methods developed in the recent literature. As a result, the detection time and number of islanded buses are reduced.

Suggested Citation

  • Sowmya Ramachandradurai & Narayanan Krishnan & Natarajan Prabaharan, 2022. "Unintentional Passive Islanding Detection and Prevention Method with Reduced Non-Detection Zones," Energies, MDPI, vol. 15(9), pages 1-26, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3038-:d:798663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3038/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3038/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    2. Muhammad Umair Shahid & Thamer Alquthami & Abubakar Siddique & Hafiz Mudassir Munir & Saqlain Abbas & Zulkarnain Abbas, 2021. "RES Based Islanded DC Microgrid with Enhanced Electrical Network Islanding Detection," Energies, MDPI, vol. 14(24), pages 1-18, December.
    3. Kumar Sahu, Bikash, 2015. "A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 621-634.
    4. Ahmed G. Abokhalil & Ahmed Bilal Awan & Abdel-Rahman Al-Qawasmi, 2018. "Comparative Study of Passive and Active Islanding Detection Methods for PV Grid-Connected Systems," Sustainability, MDPI, vol. 10(6), pages 1-15, May.
    5. Juan Roberto Lopez & Luis Ibarra & Pedro Ponce & Arturo Molina, 2021. "A Decentralized Passive Islanding Detection Method Based on the Variations of Estimated Droop Characteristics," Energies, MDPI, vol. 14(22), pages 1-19, November.
    6. José Antonio Cebollero & David Cañete & Susana Martín-Arroyo & Miguel García-Gracia & Helder Leite, 2022. "A Survey of Islanding Detection Methods for Microgrids and Assessment of Non-Detection Zones in Comparison with Grid Codes," Energies, MDPI, vol. 15(2), pages 1-30, January.
    7. Ali Selim & Salah Kamel & Amal A. Mohamed & Ehab E. Elattar, 2021. "Optimal Allocation of Multiple Types of Distributed Generations in Radial Distribution Systems Using a Hybrid Technique," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    8. Syed Basit Ali Bukhari & Khawaja Khalid Mehmood & Abdul Wadood & Herie Park, 2021. "Intelligent Islanding Detection of Microgrids Using Long Short-Term Memory Networks," Energies, MDPI, vol. 14(18), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faisal Mumtaz & Kashif Imran & Abdullah Abusorrah & Syed Basit Ali Bukhari, 2023. "An Extensive Overview of Islanding Detection Strategies of Active Distributed Generations in Sustainable Microgrids," Sustainability, MDPI, vol. 15(5), pages 1-19, March.
    2. Nitin Kumar Kulkarni & Mohan Khedkar & Chandrashekhar Narayan Bhende & Sunil Kumar Singh, 2022. "Prioritization of Passive Parameters from Modified Averaging Approach-Based Computation (MAAC) Methodology for Ascertaining Formation of Single and Multi-Location Unintentional Islands," Energies, MDPI, vol. 15(17), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sowmya Ramachandradurai & Narayanan Krishnan & Gulshan Sharma & Pitshou N. Bokoro, 2023. "Islanding Detection with Reduced Non-Detection Zones and Restoration by Reconfiguration," Energies, MDPI, vol. 16(7), pages 1-19, March.
    2. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    3. Wu, Qiyan & Zhang, Xiaoling & Sun, Jingwei & Ma, Zhifei & Zhou, Chen, 2016. "Locked post-fossil consumption of urban decentralized solar photovoltaic energy: A case study of an on-grid photovoltaic power supply community in Nanjing, China," Applied Energy, Elsevier, vol. 172(C), pages 1-11.
    4. Ênio Costa Resende & Henrique Tannús de Moura Carvalho & Luiz Carlos Gomes Freitas, 2022. "Implementation and Critical Analysis of the Active Phase Jump with Positive Feedback Anti-Islanding Algorithm," Energies, MDPI, vol. 15(13), pages 1-27, June.
    5. Wei, Jian & Zhou, Yuqi & Wang, Yuan & Miao, Zhuang & Guo, Yupeng & Zhang, Hao & Li, Xueting & Wang, Zhipeng & Shi, Zongmo, 2023. "A large-sized thermoelectric module composed of cement-based composite blocks for pavement energy harvesting and surface temperature reducing," Energy, Elsevier, vol. 265(C).
    6. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    7. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    8. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    9. Abdulaziz Almutairi & Ahmed G. Abo-Khalil & Khairy Sayed & Naif Albagami, 2020. "MPPT for a PV Grid-Connected System to Improve Efficiency under Partial Shading Conditions," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    10. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    11. Ahmed G. Abo-Khalil & Walied Alharbi & Abdel-Rahman Al-Qawasmi & Mohammad Alobaid & Ibrahim M. Alarifi, 2021. "Maximum Power Point Tracking of PV Systems under Partial Shading Conditions Based on Opposition-Based Learning Firefly Algorithm," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    12. Ma, Chao & Liu, Zhao, 2022. "Water-surface photovoltaics: Performance, utilization, and interactions with water eco-environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Lan, Haifeng & Gou, Zhonghua & Yang, Linchuan, 2020. "House price premium associated with residential solar photovoltaics and the effect from feed-in tariffs: A case study of Southport in Queensland, Australia," Renewable Energy, Elsevier, vol. 161(C), pages 907-916.
    14. Du, Hua & Han, Qi & de Vries, Bauke & Sun, Jun, 2024. "Community solar PV adoption in residential apartment buildings: A case study on influencing factors and incentive measures in Wuhan," Applied Energy, Elsevier, vol. 354(PA).
    15. Sungho Son & Nam-Wook Cho, 2020. "Technology Fusion Characteristics in the Solar Photovoltaic Industry of South Korea: A Patent Network Analysis Using IPC Co-Occurrence," Sustainability, MDPI, vol. 12(21), pages 1-19, October.
    16. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    17. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.
    18. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    19. Masamitsu Kurata & Noriatsu Matsui & Yukio Ikemoto & Hiromi Tsuboi, 2018. "In recent years, the Sustainable Development Goals has managed to shepherd the reduction of energy poverty and extension of sustainable energy, making both international objectives. Using two-period d," Economics Bulletin, AccessEcon, vol. 38(2), pages 995-1013.
    20. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3038-:d:798663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.