IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p3864-d822872.html
   My bibliography  Save this article

Topology Analysis of Natural Gas Pipeline Networks Based on Complex Network Theory

Author

Listed:
  • Heng Ye

    (School of Energy Resources, China University of Geosciences, Beijing 100083, China
    PipeChina Oil & Gas Control Center, Beijing 100013, China)

  • Zhiping Li

    (School of Energy Resources, China University of Geosciences, Beijing 100083, China)

  • Guangyue Li

    (PipeChina Oil & Gas Control Center, Beijing 100013, China)

  • Yiran Liu

    (PipeChina Oil & Gas Control Center, Beijing 100013, China)

Abstract

With the improvement of natural gas network interconnection, the network topology becomes increasingly complex. The significance of analyzing topology is gradually becoming prominent, and a systematic analysis method is required. This paper selects two typical natural gas pipeline networks: one in Europe, and the other in North China. Based on complex network theory and the nature of natural gas pipelines, topological models for the two typical networks were established and the evaluation indexes were developed based on four factors: network type, overall topological structure characteristics, path-related topological structure characteristics, and topological structure robustness. Using these indexes, the topological structure of the two typical networks is compared and analyzed quantitatively. The comparison shows that the European network topology has more redundancy, higher transmission efficiency, and greater robustness. The topology analysis method proposed in this paper is practical and suitable for the preliminary analysis of natural gas pipeline networks. The conclusions achieved by this method can assist operators in gaining an intuitive understanding of the overall characteristics, robustness, and key features of pipeline network topology, which is useful in the implementation of hierarchical prevention and control. It also serves as a solid theoretical foundation and guidance for network expansion, interconnection construction, and precise hydraulic simulation calculation in the next stage.

Suggested Citation

  • Heng Ye & Zhiping Li & Guangyue Li & Yiran Liu, 2022. "Topology Analysis of Natural Gas Pipeline Networks Based on Complex Network Theory," Energies, MDPI, vol. 15(11), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3864-:d:822872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/3864/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/3864/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lochner, Stefan & Dieckhöner, Caroline, 2012. "Civil unrest in North Africa—Risks for natural gas supply?," Energy Policy, Elsevier, vol. 45(C), pages 167-175.
    2. Praks, Pavel & Kopustinskas, Vytis & Masera, Marcelo, 2015. "Probabilistic modelling of security of supply in gas networks and evaluation of new infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 254-264.
    3. J. Buhl & J. Gautrais & N. Reeves & R. V. Solé & S. Valverde & P. Kuntz & G. Theraulaz, 2006. "Topological patterns in street networks of self-organized urban settlements," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(4), pages 513-522, February.
    4. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    5. E. Estrada, 2006. "Network robustness to targeted attacks. The interplay of expansibility and degree distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 52(4), pages 563-574, August.
    6. Cadini, Francesco & Agliardi, Gian Luca & Zio, Enrico, 2017. "A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions," Applied Energy, Elsevier, vol. 185(P1), pages 267-279.
    7. Homayoun Hamedmoghadam & Mahdi Jalili & Hai L. Vu & Lewi Stone, 2021. "Percolation of heterogeneous flows uncovers the bottlenecks of infrastructure networks," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    2. Wen, Xiangxi & Tu, Congliang & Wu, Minggong, 2018. "Node importance evaluation in aviation network based on “No Return” node deletion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 546-559.
    3. Róbert Pethes & Levente Kovács, 2023. "An Exact and an Approximation Method to Compute the Degree Distribution of Inhomogeneous Random Graph Using Poisson Binomial Distribution," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    4. Duan, Boping & Liu, Jing & Zhou, Mingxing & Ma, Liangliang, 2016. "A comparative analysis of network robustness against different link attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 144-153.
    5. Galbraith, John W. & Iuliani, Luca, 2019. "Measures of robustness for networked critical infrastructure: An empirical comparison on four electrical grids," International Journal of Critical Infrastructure Protection, Elsevier, vol. 27(C).
    6. Su, Huai & Zhang, Jinjun & Zio, Enrico & Yang, Nan & Li, Xueyi & Zhang, Zongjie, 2018. "An integrated systemic method for supply reliability assessment of natural gas pipeline networks," Applied Energy, Elsevier, vol. 209(C), pages 489-501.
    7. Ma, Xiangyu & Zhou, Huijie & Li, Zhiyi, 2021. "On the resilience of modern power systems: A complex network perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Vodák, Rostislav & Bíl, Michal & Sedoník, Jiří, 2015. "Network robustness and random processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 368-382.
    9. Sohn, Insoo, 2019. "A robust complex network generation method based on neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 593-601.
    10. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    11. LaRocca, Sarah & Guikema, Seth D., 2015. "Characterizing and predicting the robustness of power-law networks," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 157-166.
    12. Lu, Weiwei & Su, Meirong & Fath, Brian D. & Zhang, Mingqi & Hao, Yan, 2016. "A systematic method of evaluation of the Chinese natural gas supply security," Applied Energy, Elsevier, vol. 165(C), pages 858-867.
    13. Galvan, Giulio & Agarwal, Jitendra, 2020. "Assessing the vulnerability of infrastructure networks based on distribution measures," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    14. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    15. Batac, Rene C. & Cirunay, Michelle T., 2022. "Shortest paths along urban road network peripheries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    16. Sanjeev Goyal & Fernando Vega-Redondo, 2000. "Learning, Network Formation and Coordination," Econometric Society World Congress 2000 Contributed Papers 0113, Econometric Society.
    17. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
    18. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    19. Bálint Mészáros & István Simon & Zsuzsanna Dosztányi, 2009. "Prediction of Protein Binding Regions in Disordered Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    20. Irina Rish & Guillermo Cecchi & Benjamin Thyreau & Bertrand Thirion & Marion Plaze & Marie Laure Paillere-Martinot & Catherine Martelli & Jean-Luc Martinot & Jean-Baptiste Poline, 2013. "Schizophrenia as a Network Disease: Disruption of Emergent Brain Function in Patients with Auditory Hallucinations," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3864-:d:822872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.