IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1441-d1099063.html
   My bibliography  Save this article

An Exact and an Approximation Method to Compute the Degree Distribution of Inhomogeneous Random Graph Using Poisson Binomial Distribution

Author

Listed:
  • Róbert Pethes

    (Physiological Controls Research Center, Óbuda University, 1034 Budapest, Hungary)

  • Levente Kovács

    (Physiological Controls Research Center, Óbuda University, 1034 Budapest, Hungary)

Abstract

Inhomogeneous random graphs are commonly used models for complex networks where nodes have varying degrees of connectivity. Computing the degree distribution of such networks is a fundamental problem and has important applications in various fields. We define the inhomogeneous random graph as a random graph model where the edges are drawn independently and the probability of a link between any two vertices can be different for each node pair. In this paper, we present an exact and an approximation method to compute the degree distribution of inhomogeneous random graphs using the Poisson binomial distribution. The exact algorithm utilizes the DFT-CF method to compute the distribution of a Poisson binomial random variable. The approximation method uses the Poisson, binomial, and Gaussian distributions to approximate the Poisson binomial distribution.

Suggested Citation

  • Róbert Pethes & Levente Kovács, 2023. "An Exact and an Approximation Method to Compute the Degree Distribution of Inhomogeneous Random Graph Using Poisson Binomial Distribution," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1441-:d:1099063
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1441/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1441/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    2. Hong, Yili, 2013. "On computing the distribution function for the Poisson binomial distribution," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 41-51.
    3. Ehm, Werner, 1991. "Binomial approximation to the Poisson binomial distribution," Statistics & Probability Letters, Elsevier, vol. 11(1), pages 7-16, January.
    4. J. Buhl & J. Gautrais & N. Reeves & R. V. Solé & S. Valverde & P. Kuntz & G. Theraulaz, 2006. "Topological patterns in street networks of self-organized urban settlements," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 49(4), pages 513-522, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arun G. Chandrasekhar & Robert Townsend & Juan Pablo Xandri, 2018. "Financial Centrality and Liquidity Provision," NBER Working Papers 24406, National Bureau of Economic Research, Inc.
    2. Heng Ye & Zhiping Li & Guangyue Li & Yiran Liu, 2022. "Topology Analysis of Natural Gas Pipeline Networks Based on Complex Network Theory," Energies, MDPI, vol. 15(11), pages 1-20, May.
    3. Arun Chandrasekhar & Robert Townsend & Juan Pablo Pablo Xandri, 2019. "Financial Centrality and the Value of Key Players," Working Papers 2019-26, Princeton University. Economics Department..
    4. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
    5. Galbraith, John W. & Iuliani, Luca, 2019. "Measures of robustness for networked critical infrastructure: An empirical comparison on four electrical grids," International Journal of Critical Infrastructure Protection, Elsevier, vol. 27(C).
    6. Biscarri, William & Zhao, Sihai Dave & Brunner, Robert J., 2018. "A simple and fast method for computing the Poisson binomial distribution function," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 92-100.
    7. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    8. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
    9. Ryan M. Hynes & Bernardo S. Buarque & Ronald B. Davies & Dieter F. Kogler, 2020. "Hops, Skip & a Jump - The Regional Uniqueness of Beer Styles," Working Papers 202013, Geary Institute, University College Dublin.
    10. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    11. Lenore Newman & Ann Dale, 2007. "Homophily and Agency: Creating Effective Sustainable Development Networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 9(1), pages 79-90, February.
    12. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.
    13. Lorenzo Barbieri & Roberto D’Autilia & Paola Marrone & Ilaria Montella, 2023. "Graph Representation of the 15-Minute City: A Comparison between Rome, London, and Paris," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    14. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    15. Alexander Shiroky & Andrey Kalashnikov, 2021. "Mathematical Problems of Managing the Risks of Complex Systems under Targeted Attacks with Known Structures," Mathematics, MDPI, vol. 9(19), pages 1-11, October.
    16. Anand, Kartik & Gai, Prasanna & Marsili, Matteo, 2012. "Rollover risk, network structure and systemic financial crises," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1088-1100.
    17. Deligiannis, Michalis & Liberopoulos, George, 2023. "Dynamic ordering and buyer selection policies when service affects future demand," Omega, Elsevier, vol. 118(C).
    18. Yao, Jialing & Sun, Bingbin & Xi, lifeng, 2019. "Fractality of evolving self-similar networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 211-216.
    19. Sanjeev Goyal & Adrien Vigier, 2014. "Attack, Defence, and Contagion in Networks," Review of Economic Studies, Oxford University Press, vol. 81(4), pages 1518-1542.
    20. Britta Hoyer & Kris De Jaegher, 2023. "Network disruption and the common-enemy effect," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 117-155, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1441-:d:1099063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.