IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3829-d821801.html
   My bibliography  Save this article

Comparative Analysis of Overheating Risk for Typical Dwellings and Passivhaus in the UK

Author

Listed:
  • Jihoon Jang

    (Department of Architectural Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea)

  • Sukumar Natarajan

    (Department of Architecture & Civil Engineering, University of Bath, Bath BA2 7AY, UK)

  • Joosang Lee

    (Department of Architectural Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea)

  • Seung-Bok Leigh

    (Department of Architectural Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea)

Abstract

There is growing concern that airtight and well-insulated buildings designed to limit heat loss in temperate and cold climates could unintentionally elevate the risk of overheating in summers. Existing literature primarily uses dynamic simulation to investigate this problem due to the difficulty of obtaining large-scale in-performance data. To address this gap, we undertake a meta-analysis of large-scale indoor air temperature data for 195 UK dwellings, as a study of performance in a temperate climate. Of these, 113 are baseline (i.e., typical existing dwellings) and the rest designed to the high-performance Passivhaus standard. Using both Passivhaus and the well-known CIBSE TM59 overheating standards, this study found that there were few overheated cases for any building type. However, the average summer nighttime temperature of Passivhaus bedrooms was 1.6 °C higher than baseline, with 20 out of 31 measured bedrooms exceeding the overheating criterion, and the average overheating hours constituting approximately 19% of the total summertime observation period. These findings suggest that bedrooms in highly insulated dwellings may pose an overheating risk although whole-dwelling overheating risk is low.

Suggested Citation

  • Jihoon Jang & Sukumar Natarajan & Joosang Lee & Seung-Bok Leigh, 2022. "Comparative Analysis of Overheating Risk for Typical Dwellings and Passivhaus in the UK," Energies, MDPI, vol. 15(10), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3829-:d:821801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3829/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3829/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Wright & Eduardas Venskunas, 2022. "Effects of Future Climate Change and Adaptation Measures on Summer Comfort of Modern Homes across the Regions of the UK," Energies, MDPI, vol. 15(2), pages 1-26, January.
    2. David Johnston & Mark Siddall, 2016. "The Building Fabric Thermal Performance of Passivhaus Dwellings—Does It Do What It Says on the Tin?," Sustainability, MDPI, vol. 8(1), pages 1-14, January.
    3. Grottera, Carolina & Barbier, Carine & Sanches-Pereira, Alessandro & Abreu, Mariana Weiss de & Uchôa, Christiane & Tudeschini, Luís Gustavo & Cayla, Jean-Michel & Nadaud, Franck & Pereira Jr, Amaro Ol, 2018. "Linking electricity consumption of home appliances and standard of living: A comparison between Brazilian and French households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 877-888.
    4. Jihoon Jang & Joosang Lee & Eunjo Son & Kyungyong Park & Gahee Kim & Jee Hang Lee & Seung-Bok Leigh, 2019. "Development of an Improved Model to Predict Building Thermal Energy Consumption by Utilizing Feature Selection," Energies, MDPI, vol. 12(21), pages 1-20, November.
    5. Shady Attia & Camille Gobin, 2020. "Climate Change Effects on Belgian Households: A Case Study of a Nearly Zero Energy Building," Energies, MDPI, vol. 13(20), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fiona Shirani & Kate O’Sullivan & Rachel Hale & Nick Pidgeon & Karen Henwood, 2022. "From Active Houses to Active Homes: Understanding Resident Experiences of Transformational Design and Social Innovation," Energies, MDPI, vol. 15(19), pages 1-18, October.
    2. Lomas, K.J. & Li, M. & Drury, P., 2024. "How do energy efficiency measures affect the risk of summertime overheating and cold discomfort? Evidence from English homes," Energy Policy, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bezerra, Paula & Cruz, Talita & Mazzone, Antonella & Lucena, André F.P. & De Cian, Enrica & Schaeffer, Roberto, 2022. "The multidimensionality of energy poverty in Brazil: A historical analysis," Energy Policy, Elsevier, vol. 171(C).
    2. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    3. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    4. Rajat Gupta & Matt Gregg, 2021. "Integrated Testing of Building Fabric Thermal Performance for Calibration of Energy Models of Three Low-Energy Dwellings in the UK," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
    5. Attia, Shady & Canonge, Théophile & Popineau, Mathieu & Cuchet, Mathilde, 2022. "Developing a benchmark model for renovated, nearly zero-energy, terraced dwellings," Applied Energy, Elsevier, vol. 306(PB).
    6. Salem, Mohammed Z. & Ertz, Myriam & Sarigӧllü, Emine, 2021. "Demarketing strategies to rationalize electricity consumption in the Gaza Strip-Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. Chen, Haitao & Zhang, Bin & Liu, Hua & Cao, Jiguo, 2024. "The inequality in household electricity consumption due to temperature change: Data driven analysis with a function-on-function linear model," Energy, Elsevier, vol. 288(C).
    8. Cabello Eras, Juan José & Mendoza Fandiño, Jorge Mario & Sagastume Gutiérrez, Alexis & Rueda Bayona, Juan Gabriel & Sofan German, Stiven Javier, 2022. "The inequality of electricity consumption in Colombia. Projections and implications," Energy, Elsevier, vol. 249(C).
    9. Stella Tsoka & Kondylia Velikou & Konstantia Tolika & Aikaterini Tsikaloudaki, 2021. "Evaluating the Combined Effect of Climate Change and Urban Microclimate on Buildings’ Heating and Cooling Energy Demand in a Mediterranean City," Energies, MDPI, vol. 14(18), pages 1-23, September.
    10. Jun-Mao Liao & Ming-Jui Chang & Luh-Maan Chang, 2020. "Prediction of Air-Conditioning Energy Consumption in R&D Building Using Multiple Machine Learning Techniques," Energies, MDPI, vol. 13(7), pages 1-22, April.
    11. Rossella Bardazzi & Maria Grazia Pazienza & Maria Eugenia Sanin, 2021. "Life-cycle Characteristics and Energy Practices in Developing Countries: the Case of Mexico," Working Papers - Economics wp2021_11.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    12. Yuan, Jihui & Huang, Pei & Chai, Jiale, 2022. "Development of a calibrated typical meteorological year weather file in system design of zero-energy building for performance improvements," Energy, Elsevier, vol. 259(C).
    13. Rossella Bardazzi & Maria Grazia Pazienza & Maria Eugenia Sanin, 2022. "Energy practices and population cohorts: the case of Mexico," SN Business & Economics, Springer, vol. 2(11), pages 1-22, November.
    14. Olivier Dartevelle & Sergio Altomonte & Gabrielle Masy & Erwin Mlecnik & Geoffrey van Moeseke, 2022. "Indoor Summer Thermal Comfort in a Changing Climate: The Case of a Nearly Zero Energy House in Wallonia (Belgium)," Energies, MDPI, vol. 15(7), pages 1-13, March.
    15. Ma, Zhiwei & Bao, Huashan & Roskilly, Anthony Paul, 2019. "Seasonal solar thermal energy storage using thermochemical sorption in domestic dwellings in the UK," Energy, Elsevier, vol. 166(C), pages 213-222.
    16. Víctor Echarri-Iribarren & Cristina Sotos-Solano & Almudena Espinosa-Fernández & Raúl Prado-Govea, 2019. "The Passivhaus Standard in the Spanish Mediterranean: Evaluation of a House’s Thermal Behaviour of Enclosures and Airtightness," Sustainability, MDPI, vol. 11(13), pages 1-25, July.
    17. Zihao Li & Daniel Friedrich & Gareth P. Harrison, 2020. "Demand Forecasting for a Mixed-Use Building Using Agent-Schedule Information with a Data-Driven Model," Energies, MDPI, vol. 13(4), pages 1-20, February.
    18. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    19. Calise, F. & Cappiello, F. & D'Agostino, D. & Vicidomini, M., 2021. "Heat metering for residential buildings: A novel approach through dynamic simulations for the calculation of energy and economic savings," Energy, Elsevier, vol. 234(C).
    20. Adrian Pitts, 2017. "Passive House and Low Energy Buildings: Barriers and Opportunities for Future Development within UK Practice," Sustainability, MDPI, vol. 9(2), pages 1-26, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3829-:d:821801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.