IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v249y2022ics0360544222006144.html
   My bibliography  Save this article

The inequality of electricity consumption in Colombia. Projections and implications

Author

Listed:
  • Cabello Eras, Juan José
  • Mendoza Fandiño, Jorge Mario
  • Sagastume Gutiérrez, Alexis
  • Rueda Bayona, Juan Gabriel
  • Sofan German, Stiven Javier

Abstract

The inequality in electricity consumption (EC) in Colombia is assessed based on the per capita electricity consumption (ECpc) and the Gini coefficient. The ECpc was defined with the total electricity consumption and population for each department and rural and urban areas. Furthermore, the national ECpc was assessed according to the Colombian socioeconomic stratum defined by income levels. The results showed significant asymmetries in the ECpc between departments, urban and rural populations, and socioeconomic strata. The national Gini coefficient of EC and the GDP is higher than 0.5, indicating significant inequities countrywide. These results stress the need to complement the current policies more focused on achieving full access to electricity and less oriented to address the need for higher EC in households to improve welfare for the low-income and rural citizens. However, governmental projections for 2030 forecast minor improvements in this direction.

Suggested Citation

  • Cabello Eras, Juan José & Mendoza Fandiño, Jorge Mario & Sagastume Gutiérrez, Alexis & Rueda Bayona, Juan Gabriel & Sofan German, Stiven Javier, 2022. "The inequality of electricity consumption in Colombia. Projections and implications," Energy, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222006144
    DOI: 10.1016/j.energy.2022.123711
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222006144
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Haan, Jakob & Sturm, Jan-Egbert, 2017. "Finance and income inequality: A review and new evidence," European Journal of Political Economy, Elsevier, vol. 50(C), pages 171-195.
    2. Juan Jose Cabello Eras & Milen Balbis Morej n & Alexis Sagastume Guti rrez & Aldo Pardo Garc a & Mario Cabello Ulloa & Francisco Javier Rey Mart nez & Juan Gabriel Rueda-Bayona, 2019. "A look to the Electricity Generation from Non-Conventional Renewable Energy Sources in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 15-25.
    3. Bhargava, Nisha & Singh, Baldev & Gupta, Shakuntla, 2009. "Consumption of electricity in Punjab: Structure and growth," Energy Policy, Elsevier, vol. 37(6), pages 2385-2394, June.
    4. Grottera, Carolina & Barbier, Carine & Sanches-Pereira, Alessandro & Abreu, Mariana Weiss de & Uchôa, Christiane & Tudeschini, Luís Gustavo & Cayla, Jean-Michel & Nadaud, Franck & Pereira Jr, Amaro Ol, 2018. "Linking electricity consumption of home appliances and standard of living: A comparison between Brazilian and French households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 877-888.
    5. Arik Levinson & Emilson Silva, 2022. "The Electric Gini: Income Redistribution through Energy Prices," American Economic Journal: Economic Policy, American Economic Association, vol. 14(2), pages 341-365, May.
    6. Yannick Oswald & Anne Owen & Julia K. Steinberger, 2020. "Publisher Correction: Large inequality in international and intranational energy footprints between income groups and across consumption categories," Nature Energy, Nature, vol. 5(4), pages 349-349, April.
    7. Shimei Wu & Xinye Zheng & Chu Wei, 2017. "Measurement of inequality using household energy consumption data in rural China," Nature Energy, Nature, vol. 2(10), pages 795-803, October.
    8. Nguyen, Trung Thanh & Nguyen, Thanh-Tung & Hoang, Viet-Ngu & Wilson, Clevo & Managi, Shunsuke, 2019. "Energy transition, poverty and inequality in Vietnam," Energy Policy, Elsevier, vol. 132(C), pages 536-548.
    9. Maza, Adolfo & Villaverde, José, 2008. "The world per capita electricity consumption distribution: Signs of convergence?," Energy Policy, Elsevier, vol. 36(11), pages 4255-4261, November.
    10. Adolfo Meisel Roca & Lucas Hahn, 2020. "Regional Economic Inequality in Colombia, 1926–2018," Palgrave Studies in Economic History, in: Daniel A. Tirado-Fabregat & Marc Badia-Miró & Henry Willebald (ed.), Time and Space, chapter 0, pages 183-210, Palgrave Macmillan.
    11. Pettersson, Fredrik & Söderholm, Patrik & Lundmark, Robert, 2012. "Fuel switching and climate and energy policies in the European power generation sector: A generalized Leontief model," Energy Economics, Elsevier, vol. 34(4), pages 1064-1073.
    12. Jacobson, Arne & Milman, Anita D. & Kammen, Daniel M., 2005. "Letting the (energy) Gini out of the bottle: Lorenz curves of cumulative electricity consumption and Gini coefficients as metrics of energy distribution and equity," Energy Policy, Elsevier, vol. 33(14), pages 1825-1832, September.
    13. Pereira, Marcio Giannini & Freitas, Marcos Aurélio Vasconcelos & da Silva, Neilton Fidelis, 2010. "Rural electrification and energy poverty: Empirical evidences from Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1229-1240, May.
    14. Mazur, Allan, 2011. "Does increasing energy or electricity consumption improve quality of life in industrial nations?," Energy Policy, Elsevier, vol. 39(5), pages 2568-2572, May.
    15. Yannick Oswald & Anne Owen & Julia K. Steinberger, 2020. "Large inequality in international and intranational energy footprints between income groups and across consumption categories," Nature Energy, Nature, vol. 5(3), pages 231-239, March.
    16. Mirnezami, Seyed Reza, 2014. "Electricity inequality in Canada: Should pricing reforms eliminate subsidies to encourage efficient usage?," Utilities Policy, Elsevier, vol. 31(C), pages 36-43.
    17. Oscar S. Santillán & Karla G. Cedano & Manuel Martínez, 2020. "Analysis of Energy Poverty in 7 Latin American Countries Using Multidimensional Energy Poverty Index," Energies, MDPI, vol. 13(7), pages 1-19, April.
    18. Cardona, M & Gallego, J & Garcia, J & Franco, J, 2020. "Prepaid electricity and in-home displays: an alternative for the most vulnerable households in Colombia," Documentos de trabajo - Alianza EFI 18990, Alianza EFI.
    19. Chakravarty, Shoibal & Tavoni, Massimo, 2013. "Energy poverty alleviation and climate change mitigation: Is there a trade off?," Energy Economics, Elsevier, vol. 40(S1), pages 67-73.
    20. Roberto Mauricio Sánchez-Torres, 2017. "Desigualdad del ingreso en Colombia: un estudio por departamentos," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, October.
    21. Paula Andrea Nieto Alemán & Norat Roig-Tierno & Francisco Mas-Verdú & José María García Álvarez-Coque, 2018. "Multidimensional paths to regional poverty: a Fuzzy-set qualitative comparative analysis of Colombian departments," Journal of Human Development and Capabilities, Taylor & Francis Journals, vol. 19(4), pages 499-520, October.
    22. Dong, Xiao-Ying & Hao, Yu, 2018. "Would income inequality affect electricity consumption? Evidence from China," Energy, Elsevier, vol. 142(C), pages 215-227.
    23. Fernandez, E. & Saini, R.P. & Devadas, V., 2005. "Relative inequality in energy resource consumption: a case of Kanvashram village, Pauri Garhwal district, Uttranchall (India)," Renewable Energy, Elsevier, vol. 30(5), pages 763-772.
    24. Malerba, Daniele, 2020. "Poverty alleviation and local environmental degradation: An empirical analysis in Colombia," World Development, Elsevier, vol. 127(C).
    25. Jin Sik Kim & Im Hack Lee & Yong Han Ahn & Sung Eun Lim & Shin Do Kim, 2016. "An analysis of energy consumption to identify urban energy poverty in Seoul," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 20(1), pages 129-140, March.
    26. Tosapol Apaitan & Wichsinee Wibulpolprasert, 2018. "Stylized Facts on Thailand's Residential Electricity Consumption: Evidence from the Provincial Electricity Authority," PIER Discussion Papers 107, Puey Ungphakorn Institute for Economic Research.
    27. Pardo Martínez, Clara Inés, 2015. "Energy and sustainable development in cities: A case study of Bogotá," Energy, Elsevier, vol. 92(P3), pages 612-621.
    28. Zhang, Tong & Shi, Xunpeng & Zhang, Dayong & Xiao, Junji, 2019. "Socio-economic development and electricity access in developing economies: A long-run model averaging approach," Energy Policy, Elsevier, vol. 132(C), pages 223-231.
    29. Zhang, Chi & Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2017. "On electricity consumption and economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 353-368.
    30. Mohammadi, Hassan & Ram, Rati, 2012. "Cross-country convergence in energy and electricity consumption, 1971–2007," Energy Economics, Elsevier, vol. 34(6), pages 1882-1887.
    31. Ouedraogo, Nadia S., 2013. "Energy consumption and human development: Evidence from a panel cointegration and error correction model," Energy, Elsevier, vol. 63(C), pages 28-41.
    32. Wang, Zhaohua & Bui, Quocviet & Zhang, Bin, 2020. "The relationship between biomass energy consumption and human development: Empirical evidence from BRICS countries," Energy, Elsevier, vol. 194(C).
    33. Tran, Nguyen Van & Tran, Quyet Van & Do, Linh Thi Thuy & Dinh, Linh Hong & Do, Ha Thi Thu, 2019. "Trade off between environment, energy consumption and human development: Do levels of economic development matter?," Energy, Elsevier, vol. 173(C), pages 483-493.
    34. Nguyen, Trung Thanh & Nguyen, Thanh-Tung & Hoang, Viet-Ngu & Wilson, Clevo, 2019. "Energy transition, poverty and inequality: panel evidence from Vietnam," MPRA Paper 107182, University Library of Munich, Germany, revised 10 May 2019.
    35. Nadimi, Reza & Tokimatsu, Koji, 2018. "Modeling of quality of life in terms of energy and electricity consumption," Applied Energy, Elsevier, vol. 212(C), pages 1282-1294.
    36. Dagnachew, Anteneh G. & Lucas, Paul L. & Hof, Andries F. & van Vuuren, Detlef P., 2018. "Trade-offs and synergies between universal electricity access and climate change mitigation in Sub-Saharan Africa," Energy Policy, Elsevier, vol. 114(C), pages 355-366.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro Cleves & Eva Youkhana & Javier Toro, 2022. "A Method to Assess Agroecosystem Resilience to Climate Variability," Sustainability, MDPI, vol. 14(14), pages 1-26, July.
    2. Sun, Shuyu & Tong, Kangkang, 2024. "Rural-urban inequality in energy use sufficiency and efficiency during a rapid urbanization period," Applied Energy, Elsevier, vol. 364(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Haitao & Zhang, Bin & Wang, Zhaohua, 2022. "Hidden inequality in household electricity consumption: Measurement and determinants based on large-scale smart meter data," China Economic Review, Elsevier, vol. 71(C).
    2. Gereon tho Pesch & Anna Kristín Einarsdóttir & Kevin Joseph Dillman & Jukka Heinonen, 2023. "Energy Consumption and Human Well-Being: A Systematic Review," Energies, MDPI, vol. 16(18), pages 1-22, September.
    3. Zhang, Mingming & Liu, Jinghui & Liu, Liyun & Zhou, Dequn, 2023. "Inequality in urban household energy consumption for 30 Chinese provinces," Energy Policy, Elsevier, vol. 172(C).
    4. Bianco, V. & Proskuryakova, L. & Starodubtseva, A., 2021. "Energy inequality in the Eurasian Economic Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Sun, Shuyu & Tong, Kangkang, 2024. "Rural-urban inequality in energy use sufficiency and efficiency during a rapid urbanization period," Applied Energy, Elsevier, vol. 364(C).
    6. Michael Carnegie LaBelle & Géza Tóth & Tekla Szép, 2022. "Not Fit for 55: Prioritizing Human Well-Being in Residential Energy Consumption in the European Union," Energies, MDPI, vol. 15(18), pages 1-25, September.
    7. Li, Jiajia & Li, Houjian, 2022. "Spiritual support or living support: Which alleviates solid fuel use for rural households in ethnical minority regions of China?," Renewable Energy, Elsevier, vol. 189(C), pages 479-491.
    8. Ivan Ackermann & Doina Radulescu & Doina Maria Radulescu, 2024. "Unveiling the Energy Price Tag – Assessing the Degree of Regressivity of Household Energy Expenditures Among European Countries," CESifo Working Paper Series 11390, CESifo.
    9. Wang, Na & Fu, Xiaodong & Wang, Shaobin & Yang, Hao & Li, Zhen, 2022. "Convergence characteristics and distribution patterns of residential electricity consumption in China: An urban-rural gap perspective," Energy, Elsevier, vol. 254(PB).
    10. Wang, Zhaohua & Bui, Quocviet & Zhang, Bin & Nawarathna, Chulan Lasantha K. & Mombeuil, Claudel, 2021. "The nexus between renewable energy consumption and human development in BRICS countries: The moderating role of public debt," Renewable Energy, Elsevier, vol. 165(P1), pages 381-390.
    11. Djeunankan, Ronald & Njangang, Henri & Tadadjeu, Sosson & Kamguia, Brice, 2023. "Remittances and energy poverty: Fresh evidence from developing countries," Utilities Policy, Elsevier, vol. 81(C).
    12. Huang, Rui & Tian, Lixin, 2021. "CO2 emissions inequality through the lens of developing countries," Applied Energy, Elsevier, vol. 281(C).
    13. Betul Can & Zahoor Ahmed & Mahmood Ahmad & Muhlis Can, 2022. "Do renewable energy consumption and green trade openness matter for human well-being? Empirical evidence from European Union countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 164(3), pages 1043-1059, December.
    14. Liu, Fengqi & Kang, Yuxin & Guo, Kun, 2022. "Is electricity consumption of Chinese counties decoupled from carbon emissions? A study based on Tapio decoupling index," Energy, Elsevier, vol. 251(C).
    15. Mohd Arshad Ansari & Muhammed Ashiq Villanthenkodath & Vaseem Akram & Badri Narayan Rath, 2023. "The nexus between ecological footprint, economic growth, and energy poverty in sub-Saharan Africa: a technological threshold approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7823-7850, August.
    16. Milena Büchs & Noel Cass & Caroline Mullen & Karen Lucas & Diana Ivanova, 2023. "Emissions savings from equitable energy demand reduction," Nature Energy, Nature, vol. 8(7), pages 758-769, July.
    17. Karbassi, Veis & Trotter, Philipp A. & Walther, Grit, 2023. "Diversifying the African energy system: Economic versus equitable allocation of renewable electricity and e-fuel production," Applied Energy, Elsevier, vol. 350(C).
    18. Dong, Kangyin & Jiang, Qingzhe & Shahbaz, Muhammad & Zhao, Jun, 2021. "Does low-carbon energy transition mitigate energy poverty? The case of natural gas for China," Energy Economics, Elsevier, vol. 99(C).
    19. Lara P. Clark & Samuel Tabory & Kangkang Tong & Joseph L. Servadio & Kelsey Kappler & Corey Kewei Xu & Abiola S. Lawal & Peter Wiringa & Len Kne & Richard Feiock & Julian D. Marshall & Armistead Russe, 2022. "A data framework for assessing social inequality and equity in multi‐sector social, ecological, infrastructural urban systems: Focus on fine‐spatial scales," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 145-163, February.
    20. Hashemizadeh, Ali & Bui, Quocviet & Zaidi, Syed Anees Haider, 2022. "A blend of renewable and nonrenewable energy consumption in G-7 countries: The role of disaggregate energy in human development," Energy, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222006144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.