IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3798-d820859.html
   My bibliography  Save this article

The Distribution and Detection Issues of Counterfeit Lithium-Ion Batteries

Author

Listed:
  • Lingxi Kong

    (Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742, USA)

  • Diganta Das

    (Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742, USA)

  • Michael G. Pecht

    (Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, College Park, MD 20742, USA)

Abstract

This paper presents the various ways that lithium-ion batteries are being counterfeited, the problems that counterfeit batteries present, how they enter the consumer market, and the difficulties of detection. Simple external visual inspection of the battery is unreliable. As shown in the presented case study, even for the same brand batteries, their internal structures are different. The current counterfeit prevention methods focus on the manufacturing step. To reduce the risk of counterfeit batteries, device manufacturers and retail stores should characterize the batteries they receive. In addition, related authorities or organizations should set standards to enable a universal battery tracking method along the supply chain to prevent counterfeit lithium-ion batteries from entering the market.

Suggested Citation

  • Lingxi Kong & Diganta Das & Michael G. Pecht, 2022. "The Distribution and Detection Issues of Counterfeit Lithium-Ion Batteries," Energies, MDPI, vol. 15(10), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3798-:d:820859
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3798/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3798/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniele Stampatori & Pier Paolo Raimondi & Michel Noussan, 2020. "Li-Ion Batteries: A Review of a Key Technology for Transport Decarbonization," Energies, MDPI, vol. 13(10), pages 1-23, May.
    2. Lingxi Kong & Chuan Li & Jiuchun Jiang & Michael G. Pecht, 2018. "Li-Ion Battery Fire Hazards and Safety Strategies," Energies, MDPI, vol. 11(9), pages 1-11, August.
    3. Haipeng Pan & Chengte Chen & Minming Gu, 2022. "A Method for Predicting the Remaining Useful Life of Lithium Batteries Considering Capacity Regeneration and Random Fluctuations," Energies, MDPI, vol. 15(7), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Cortada-Torbellino & Abdelali El Aroudi & Hugo Valderrama-Blavi, 2023. "Outlook of Lithium-Ion Battery Regulations and Procedures to Improve Cell Degradation Detection and Other Alternatives," Energies, MDPI, vol. 16(5), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    2. Jannesar Niri, Anahita & Poelzer, Gregory A. & Zhang, Steven E. & Rosenkranz, Jan & Pettersson, Maria & Ghorbani, Yousef, 2024. "Sustainability challenges throughout the electric vehicle battery value chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    3. Nguyen-Tien, Viet & Dai, Qiang & Harper, Gavin D.J. & Anderson, Paul A. & Elliott, Robert J.R., 2022. "Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy," Applied Energy, Elsevier, vol. 321(C).
    4. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    5. Hamid Khatibi & Eman Hassan & Dominic Frisone & Mahdi Amiriyan & Rashid Farahati & Siamak Farhad, 2022. "Recycling and Reusing Copper and Aluminum Current-Collectors from Spent Lithium-Ion Batteries," Energies, MDPI, vol. 15(23), pages 1-15, November.
    6. Gabriele Sordi & Claudio Rabissi & Andrea Casalegno, 2023. "Reliable Thermal-Physical Modeling of Lithium-Ion Batteries: Consistency between High-Frequency Impedance and Ion Transport," Energies, MDPI, vol. 16(12), pages 1-17, June.
    7. Jingwei Hu & Bing Lin & Mingfen Wang & Jie Zhang & Wenliang Zhang & Yu Lu, 2022. "State of Charge Centralized Estimation of Road Condition Information Based on Fuzzy Sunday Algorithm," Energies, MDPI, vol. 15(8), pages 1-15, April.
    8. Juan Antonio López-Villanueva & Pablo Rodríguez-Iturriaga & Luis Parrilla & Salvador Rodríguez-Bolívar, 2023. "Application of Variable-Order Fractional Calculus to the Modeling of Calendar Aging in Lithium-Ion Batteries," Energies, MDPI, vol. 16(5), pages 1-18, March.
    9. Yongsheng Shi & Tailin Li & Leicheng Wang & Hongzhou Lu & Yujun Hu & Beichen He & Xinran Zhai, 2023. "A Method for Predicting the Life of Lithium-Ion Batteries Based on Successive Variational Mode Decomposition and Optimized Long Short-Term Memory," Energies, MDPI, vol. 16(16), pages 1-16, August.
    10. Roberto de Fazio & Donato Cafagna & Giorgio Marcuccio & Paolo Visconti, 2020. "Limitations and Characterization of Energy Storage Devices for Harvesting Applications," Energies, MDPI, vol. 13(4), pages 1-18, February.
    11. Simpson, J.G. & Hanrahan, G. & Loth, E. & Koenig, G.M. & Sadoway, D.R., 2021. "Liquid metal battery storage in an offshore wind turbine: Concept and economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Ian Kay & Siamak Farhad & Ajay Mahajan & Roja Esmaeeli & Sayed Reza Hashemi, 2022. "Robotic Disassembly of Electric Vehicles’ Battery Modules for Recycling," Energies, MDPI, vol. 15(13), pages 1-14, July.
    13. Zhenhai Gao & Xiaoting Zhang & Yang Xiao & Hao Gao & Huiyuan Wang & Changhao Piao, 2019. "Influence of Low-Temperature Charge on the Mechanical Integrity Behavior of 18650 Lithium-Ion Battery Cells Subject to Lateral Compression," Energies, MDPI, vol. 12(5), pages 1-17, February.
    14. Pius Victor Chombo & Yossapong Laoonual & Somchai Wongwises, 2021. "Lessons from the Electric Vehicle Crashworthiness Leading to Battery Fire," Energies, MDPI, vol. 14(16), pages 1-21, August.
    15. Chen, Quanyi & Zhang, Xuan & Nie, Pengbo & Zhang, Siwei & Wei, Guodan & Sun, Hongbin, 2023. "A fast thermal simulation and dynamic feedback control framework for lithium-ion batteries," Applied Energy, Elsevier, vol. 350(C).
    16. Najmul Hoque & Wahidul Biswas & Ilyas Mazhar & Ian Howard, 2020. "Life Cycle Sustainability Assessment of Alternative Energy Sources for the Western Australian Transport Sector," Sustainability, MDPI, vol. 12(14), pages 1-33, July.
    17. Zhang, Qi & Tang, Yanyan & Bunn, Derek & Li, Hailong & Li, Yaoming, 2021. "Comparative evaluation and policy analysis for recycling retired EV batteries with different collection modes," Applied Energy, Elsevier, vol. 303(C).
    18. Rodríguez-Iturriaga, Pablo & Anseán, David & Rodríguez-Bolívar, Salvador & García, Víctor Manuel & González, Manuela & López-Villanueva, Juan Antonio, 2024. "Modeling current-rate effects in lithium-ion batteries based on a distributed, multi-particle equivalent circuit model," Applied Energy, Elsevier, vol. 353(PA).
    19. Hyeonhong Jung & Seongjun Lee, 2023. "A Study on Capacity and State of Charge Estimation of VRFB Systems Using Cumulated Charge and Electrolyte Volume under Rebalancing Conditions," Energies, MDPI, vol. 16(5), pages 1-14, March.
    20. Kim, Hong-Keun & Lee, Kyu-Jin, 2023. "Use of a multiphysics model to investigate the performance and degradation of lithium-ion battery packs with different electrical configurations," Energy, Elsevier, vol. 262(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3798-:d:820859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.