IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1939-d527683.html
   My bibliography  Save this article

Adopting a Conversion Design Approach to Maximize the Energy Density of Battery Packs in Electric Vehicles

Author

Listed:
  • Erika Pierri

    (Institute of Engineering Design, Technische Universität Braunschweig, Hermann-Blenk-Straße 42, 38108 Braunschweig, Germany
    Current address at: Institute of Machine Tools and Production Technology, Technische Universität Braunschweig, Langer Kamp 19B, 38106 Braunschweig, Germany.)

  • Valentina Cirillo

    (Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy)

  • Thomas Vietor

    (Institute of Engineering Design, Technische Universität Braunschweig, Hermann-Blenk-Straße 42, 38108 Braunschweig, Germany)

  • Marco Sorrentino

    (Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy)

Abstract

Innovative vehicle concepts have been developed in the past years in the automotive sector, including alternative drive systems such as hybrid and battery electric vehicles, so as to meet the environmental targets and cope with the increasingly stringent emissions regulations. The preferred hybridizing technology is lithium-ion battery, thanks to its high energy density. The optimal integration of battery packs in the vehicle is a challenging task when designing e-mobility concepts. Therefore, this work proposes a conceptual design procedure aimed at optimizing the sizing of hybrid and battery electric vehicles. Particularly, the influence of the cell type, physical disposition and arrangement of the electrical devices is accounted for within a conversion design framework. The optimization is focused on the trade-off between the battery pack capacity and weight. After introducing the main features of electric traction systems and their challenges compared to conventional ones, the relevant design properties of electric vehicles are analyzed. A detailed strategy, encompassing the selection of battery format and technology, battery pack design and final assessment of the proposed set-up, is presented and implemented in an exemplary application, assuming an existing commercial vehicle as the reference starting layout. Prismatic, cylindrical and pouch cells are configured aiming at achieving installed battery energy as close as possible to the reference one, while meeting the original installation space constraint. The best resulting configuration, which also guarantees similar peak power performance of the reference battery-pack, allows reducing the mass of the storage system down to 70% of its starting value.

Suggested Citation

  • Erika Pierri & Valentina Cirillo & Thomas Vietor & Marco Sorrentino, 2021. "Adopting a Conversion Design Approach to Maximize the Energy Density of Battery Packs in Electric Vehicles," Energies, MDPI, vol. 14(7), pages 1-24, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1939-:d:527683
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1939/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1939/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gert Berckmans & Maarten Messagie & Jelle Smekens & Noshin Omar & Lieselot Vanhaverbeke & Joeri Van Mierlo, 2017. "Cost Projection of State of the Art Lithium-Ion Batteries for Electric Vehicles Up to 2030," Energies, MDPI, vol. 10(9), pages 1-20, September.
    2. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    3. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    4. Hannan, M.A. & Hoque, M.M. & Mohamed, A. & Ayob, A., 2017. "Review of energy storage systems for electric vehicle applications: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 771-789.
    5. Tie, Siang Fui & Tan, Chee Wei, 2013. "A review of energy sources and energy management system in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 82-102.
    6. Lingxi Kong & Chuan Li & Jiuchun Jiang & Michael G. Pecht, 2018. "Li-Ion Battery Fire Hazards and Safety Strategies," Energies, MDPI, vol. 11(9), pages 1-11, August.
    7. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Wenbin & Cleaver, Christopher J. & Dunant, Cyrille F. & Allwood, Julian M. & Lin, Jianguo, 2023. "Cost, range anxiety and future electricity supply: A review of how today's technology trends may influence the future uptake of BEVs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.
    3. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
    4. Aritra Ghosh, 2020. "Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    5. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    6. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    8. Yanamandra, Kaushik & Pinisetty, Dinesh & Gupta, Nikhil, 2023. "Impact of carbon additives on lead-acid battery electrodes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    9. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Yu, Xiao & Sandhu, Navjot S. & Yang, Zhenyi & Zheng, Ming, 2020. "Suitability of energy sources for automotive application – A review," Applied Energy, Elsevier, vol. 271(C).
    11. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    12. Reddi Khasim, Shaik & Dhanamjayulu, C., 2021. "Selection parameters and synthesis of multi-input converters for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    13. Thorne, Rebecca Jayne & Hovi, Inger Beate & Figenbaum, Erik & Pinchasik, Daniel Ruben & Amundsen, Astrid Helene & Hagman, Rolf, 2021. "Facilitating adoption of electric buses through policy: Learnings from a trial in Norway," Energy Policy, Elsevier, vol. 155(C).
    14. Horn, Michael & MacLeod, Jennifer & Liu, Meinan & Webb, Jeremy & Motta, Nunzio, 2019. "Supercapacitors: A new source of power for electric cars?," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 93-103.
    15. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    16. Costa, C.M. & Barbosa, J.C. & Castro, H. & Gonçalves, R. & Lanceros-Méndez, S., 2021. "Electric vehicles: To what extent are environmentally friendly and cost effective? – Comparative study by european countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    18. Jeon, Deok Hwan & Cho, Jae Yong & Jhun, Jeong Pil & Ahn, Jung Hwan & Jeong, Sinwoo & Jeong, Se Yeong & Kumar, Anuruddh & Ryu, Chul Hee & Hwang, Wonseop & Park, Hansun & Chang, Cheulho & Lee, Hyoungjin, 2021. "A lever-type piezoelectric energy harvester with deformation-guiding mechanism for electric vehicle charging station on smart road," Energy, Elsevier, vol. 218(C).
    19. Samuel Pelletier & Ola Jabali & Gilbert Laporte, 2016. "50th Anniversary Invited Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives," Transportation Science, INFORMS, vol. 50(1), pages 3-22, February.
    20. Yueling Xu & Wenyu Zhang & Haijun Bao & Shuai Zhang & Ying Xiang, 2019. "A SEM–Neural Network Approach to Predict Customers’ Intention to Purchase Battery Electric Vehicles in China’s Zhejiang Province," Sustainability, MDPI, vol. 11(11), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1939-:d:527683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.