IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3779-d820494.html
   My bibliography  Save this article

Performance Assessment of an Air-Type BIPVT Collector with Perforated Baffles through Indoor and Outdoor Experiments

Author

Listed:
  • Jin-Hee Kim

    (Green Energy Technology Research Center, Kongju National University, Cheonan 31080, Korea)

  • Ji-Suk Yu

    (Department of Energy Systems Engineering, Graduate School of Energy Systems Engineering, Kongju National University, Cheonan 31080, Korea)

  • Erin Gaucher-Loksts

    (CanmetENERGY, Natural Resources Canada, 1615 Lionel-Boulet Blvd, Varennes, QC J3X 1P7, Canada)

  • Benjamin Roy

    (CanmetENERGY, Natural Resources Canada, 1615 Lionel-Boulet Blvd, Varennes, QC J3X 1P7, Canada)

  • Véronique Delisle

    (CanmetENERGY, Natural Resources Canada, 1615 Lionel-Boulet Blvd, Varennes, QC J3X 1P7, Canada)

  • Jun-Tae Kim

    (Department of Energy Systems Engineering, Graduate School of Energy Systems Engineering, Kongju National University, Cheonan 31080, Korea)

Abstract

The performance of air-type PVT and BIPVT collectors has been extensively studied. As a system that generates heat and power, PVT collector testing has some particularities especially when using air as a heat recovery fluid and a building-integrated design (BIPVT). The electrical and thermal experimental performance of such collectors are currently being evaluated using in-house methods or PV and/or solar thermal collector standards. The use of a wide range of methods, testing conditions and experimental setups makes it difficult not only to compare the performance of different designs, but also to have confidence in the results obtained. This study evaluates the performance of an air-type BIPVT collector with in-channel perforated baffle plates for heat transfer enhancement designed for a building-integrated façade. As part of a joint research project between Korea and Canada, the proposed collector’s performance was evaluated through indoor (Canada) and outdoor experiments (Korea). Limited comparison of the results obtained with the two testing methods could be performed due to differences in environmental testing conditions, BIPVT collector area and experimental setup. Nevertheless, the limited measurement points under comparable testing conditions indicate that the results from the indoor and outdoor experiments have a similar trend. A comparison between the studied collector having a full PV absorber and a BIPVT collector with a hybrid PV/solar thermal collector absorber using a similar indoor experimental setup and testing conditions was performed. It showed that under still air conditions, for an irradiance level of approximately 820 W/m 2 and with a low flow rate, the BIPVT collector with a hybrid PV/solar thermal absorber has a thermal and electrical efficiency of 25.1% and 5.9%, respectively. Under similar conditions, the BIPVT collector with a full PV absorber has a thermal efficiency of 23.9% and an electrical efficiency of 13.5%. At higher flowrates, both units have similar thermal efficiencies, however, the BIPVT collector with a PV absorber remains with an electrical efficiency that is more than double that of the unit with a hybrid PV/solar thermal absorber.

Suggested Citation

  • Jin-Hee Kim & Ji-Suk Yu & Erin Gaucher-Loksts & Benjamin Roy & Véronique Delisle & Jun-Tae Kim, 2022. "Performance Assessment of an Air-Type BIPVT Collector with Perforated Baffles through Indoor and Outdoor Experiments," Energies, MDPI, vol. 15(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3779-:d:820494
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3779/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3779/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Çiftçi, Erdem & Khanlari, Ataollah & Sözen, Adnan & Aytaç, İpek & Tuncer, Azim Doğuş, 2021. "Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: A numerical and experimental investigation," Renewable Energy, Elsevier, vol. 180(C), pages 410-423.
    2. Jin-Hee Kim & Ji-Suk Yu & Jun-Tae Kim, 2021. "An Experimental Study on the Energy and Exergy Performance of an Air-Type PVT Collector with Perforated Baffle," Energies, MDPI, vol. 14(10), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulio Mangherini & Valentina Diolaiti & Paolo Bernardoni & Alfredo Andreoli & Donato Vincenzi, 2023. "Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings," Energies, MDPI, vol. 16(19), pages 1-35, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    2. Kou, Xiaoxue & Wang, Ruzhu, 2023. "Thermodynamic analysis of electric to thermal heating pathways coupled with thermal energy storage," Energy, Elsevier, vol. 284(C).
    3. Miqdam T. Chaichan & Hussein A. Kazem & Moafaq K. S. Al-Ghezi & Ali H. A. Al-Waeli & Ali J. Ali & Kamaruzzaman Sopian & Abdul Amir H. Kadhum & Wan Nor Roslam Wan Isahak & Mohd S. Takriff & Ahmed A. Al, 2023. "Effect of Different Preparation Parameters on the Stability and Thermal Conductivity of MWCNT-Based Nanofluid Used for Photovoltaic/Thermal Cooling," Sustainability, MDPI, vol. 15(9), pages 1-24, May.
    4. Afshari, Faraz & Mandev, Emre & Muratçobanoğlu, Burak & Yetim, Ali Fatih & Ceviz, Mehmet Akif, 2023. "Experimental and numerical study on a novel fanless air-to-air solar thermoelectric refrigerator equipped with boosted heat exchanger," Renewable Energy, Elsevier, vol. 207(C), pages 253-265.
    5. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2022. "Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Renewable Energy, Elsevier, vol. 194(C), pages 705-718.
    6. Benlioğlu, Muhammet Mustafa & Karaağaç, Mehmet Onur & Ergün, Alper & Ceylan, İlhan & Ali, İsmail Hamad Guma, 2023. "A detailed analysis of a novel auto-controlled solar drying system combined with thermal energy storage concentrated solar air heater (CSAC) and concentrated photovoltaic/thermal (CPV/T)," Renewable Energy, Elsevier, vol. 211(C), pages 420-433.
    7. Ceylin Şirin & Fatih Selimefendigil & Hakan Fehmi Öztop, 2023. "Performance Analysis and Identification of an Indirect Photovoltaic Thermal Dryer with Aluminum Oxide Nano-Embedded Thermal Energy Storage Modification," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    8. Khanlari, Ataollah & Tuncer, Azim Doğuş, 2023. "Analysis of an infrared-assisted triple-flow prototype solar drying system with nano-embedded absorber coating: An experimental and numerical study," Renewable Energy, Elsevier, vol. 216(C).
    9. Gürbüz, Emine Yağız & Şahinkesen, İstemihan & Tuncer, Azim Doğuş & Keçebaş, Ali, 2023. "Design and experimental analysis of a parallel-flow photovoltaic-thermal air collector with finned latent heat thermal energy storage unit," Renewable Energy, Elsevier, vol. 217(C).
    10. Gupta, Ankur & Das, Biplab & Biswas, Agnimitra & Mondol, Jayanta Deb, 2022. "Sustainability and 4E analysis of novel solar photovoltaic-thermal solar dryer under forced and natural convection drying," Renewable Energy, Elsevier, vol. 188(C), pages 1008-1021.
    11. Choi, Hwiung & Choi, Kwanghwan, 2022. "Parametric study of a novel air-based photovoltaic-thermal collector with a transverse triangular-shaped block," Renewable Energy, Elsevier, vol. 201(P1), pages 96-110.
    12. Alkhalidi, Ammar & Salameh, Tareq & Al Makky, Ahmed, 2024. "Experimental investigation thermal and exergy efficiency of photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 222(C).
    13. Chen, Heng & Mansir, Ibrahim B. & Chauhan, Bhupendra Singh & Al-Zahrani, Ahmed & Deifalla, Ahmed & Hua, Yinhai & Peng, Fan, 2023. "A comprehensive numerical study on the effectiveness of a rotational-based PTC collector integrated porous foam and PV module," Renewable Energy, Elsevier, vol. 215(C).
    14. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Pu, Jihong, 2022. "Feasibility investigation of spectral splitting photovoltaic /thermal systems for domestic space heating," Renewable Energy, Elsevier, vol. 192(C), pages 231-242.
    15. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    16. Monjur Mourshed & Nahid Imtiaz Masuk & Huy Quoc Nguyen & Bahman Shabani, 2022. "An Experimental Approach to Energy and Exergy Analyses of a Hybrid PV/T System with Simultaneous Water and Air Cooling," Energies, MDPI, vol. 15(18), pages 1-17, September.
    17. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2024. "A comprehensive review of hybrid solar dryers integrated with auxiliary energy and units for agricultural products," Energy, Elsevier, vol. 293(C).
    18. Li, Mengjie & Liu, Ming & Xu, Can & Wang, Jinshi & Yan, Junjie, 2023. "Thermodynamic and sensitivity analyses on drying subprocesses of various evaporative dryers: A comparative study," Energy, Elsevier, vol. 284(C).
    19. Ewa Raj & Katarzyna Znajdek & Mateusz Dionizy & Przemysław Czarnecki & Przemysław Niedzielski & Łukasz Ruta & Zbigniew Lisik, 2022. "Artificial Sun—A Stand to Test New PVT Minimodules," Energies, MDPI, vol. 15(9), pages 1-11, May.
    20. Senthilarasu Sundaram & Manosh C. Paul & Yasser Mahmoudi, 2022. "Research on Hybrid Solar Photovoltaic/Thermal (PV/T) System," Energies, MDPI, vol. 15(3), pages 1-3, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3779-:d:820494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.