IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v215y2023ics0960148123007607.html
   My bibliography  Save this article

A comprehensive numerical study on the effectiveness of a rotational-based PTC collector integrated porous foam and PV module

Author

Listed:
  • Chen, Heng
  • Mansir, Ibrahim B.
  • Chauhan, Bhupendra Singh
  • Al-Zahrani, Ahmed
  • Deifalla, Ahmed
  • Hua, Yinhai
  • Peng, Fan

Abstract

Integrating Photovoltaic modules with Parabolic Trough Solar Collector (PTC) (PTC-PV) is a method boosting the operating performance of the noticed collector. The PTC-PV unit is not only able to maintain the needed thermal energy but also can provide a tremendous amount of electricity. In this study, the exergy and energy outputs of a PTC-PV unit are enhanced by integrating it with porous metal foam and moving the absorber tube rotationally. The studied cases include a PTC-PV unit, rotational PTC-PV (RPTC-PV) unit, rotational PTC-PV unit integrated with ten separate porous metal foam layers (RPTC-PV-SPF), and rotational PTC-PV unit integrated with a uniform porous metal foam layer (RPTC-PV-UPF). Because of identifying the best unit, the consequence of key factors, namely, solar radiation, inlet mass flow level, and inlet temperature on the outputs of the units, are studied respecting thermodynamic rules. Additionally, the effect of nanoparticles mass fraction, the rotational speed, and metal foam thickness on the outputs of the best unit (RPTC-PV-UPF) are evaluated. According to the results, the highest energy and exergy outputs among the simulated cases belong to the RPTC-PV-UPF unit. At the base case condition, the net energy effectiveness of the PTC-PV, RPTC-PV, RPTC-PV-SPF, and RPTC-PV-UPF units is 58.95%, 90.35%, 89.46%, and 91.42%, respectively. Also, the overall exergy efficiency of these units is 8.43%, 3.37%, 9.48%, and 11.89%, respectively. It is found that the VP-1/MWCNT is the best working fluid for the RPTC-PV-UPF unit. By declining the void fraction of MWCNT nanofluid, the overall exergy and energy performance of the system, respectively, elevates by 9.74% and 0.25%. The nanofluid-based RPTC-PV-UPF unit foam thickness of 8 mm, and rotational speed of 0.5 rad/s, has the highest performance among the studied cases from the exergy viewpoint. The energy and exergy outputs of the RPTC-PV-UPF unit at the optimum operating condition are 67.41% and 77.47% higher than that of the PTC-PV unit.

Suggested Citation

  • Chen, Heng & Mansir, Ibrahim B. & Chauhan, Bhupendra Singh & Al-Zahrani, Ahmed & Deifalla, Ahmed & Hua, Yinhai & Peng, Fan, 2023. "A comprehensive numerical study on the effectiveness of a rotational-based PTC collector integrated porous foam and PV module," Renewable Energy, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123007607
    DOI: 10.1016/j.renene.2023.05.127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123007607
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Qiliang & Yao, Yao & Shen, Zhicheng & Yang, Hongxing, 2023. "A hybrid parabolic trough solar collector system integrated with photovoltaics," Applied Energy, Elsevier, vol. 329(C).
    2. Valizade, M. & Heyhat, M.M. & Maerefat, M., 2020. "Experimental study of the thermal behavior of direct absorption parabolic trough collector by applying copper metal foam as volumetric solar absorption," Renewable Energy, Elsevier, vol. 145(C), pages 261-269.
    3. Reddy, K.S. & Ananthsornaraj, C., 2020. "Design, development and performance investigation of solar Parabolic Trough Collector for large-scale solar power plants," Renewable Energy, Elsevier, vol. 146(C), pages 1943-1957.
    4. Toghyani, S. & Afshari, E. & Baniasadi, E. & Shadloo, M.S., 2019. "Energy and exergy analyses of a nanofluid based solar cooling and hydrogen production combined system," Renewable Energy, Elsevier, vol. 141(C), pages 1013-1025.
    5. Valizadeh, Mohammad & Sarhaddi, Faramarz & Mahdavi Adeli, Mohsen, 2019. "Exergy performance assessment of a linear parabolic trough photovoltaic thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 1028-1041.
    6. Çiftçi, Erdem & Khanlari, Ataollah & Sözen, Adnan & Aytaç, İpek & Tuncer, Azim Doğuş, 2021. "Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: A numerical and experimental investigation," Renewable Energy, Elsevier, vol. 180(C), pages 410-423.
    7. Sun, Wen & Feng, Li & Abed, Azher M. & Sharma, Aman & Arsalanloo, Akbar, 2022. "Thermoeconomic assessment of a renewable hybrid RO/PEM electrolyzer integrated with Kalina cycle and solar dryer unit using response surface methodology (RSM)," Energy, Elsevier, vol. 260(C).
    8. Herez, Amal & El Hage, Hicham & Lemenand, Thierry & Ramadan, Mohamad & Khaled, Mahmoud, 2021. "Parabolic trough photovoltaic/thermal hybrid system: Thermal modeling and parametric analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 224-236.
    9. El-Bakry, M. Medhat & Kassem, Mahmoud A. & Hassan, Muhammed A., 2021. "Passive performance enhancement of parabolic trough solar concentrators using internal radiation heat shields," Renewable Energy, Elsevier, vol. 165(P1), pages 52-66.
    10. Michael, Jee Joe & Selvarasan, Iniyan & Goic, Ranko, 2016. "Fabrication, experimental study and testing of a novel photovoltaic module for photovoltaic thermal applications," Renewable Energy, Elsevier, vol. 90(C), pages 95-104.
    11. Moosavian, Seyed Farhan & Borzuei, Daryoosh & Ahmadi, Abolfazl, 2021. "Energy, exergy, environmental and economic analysis of the parabolic solar collector with life cycle assessment for different climate conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 301-320.
    12. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    13. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & Ji, J., 2009. "Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover," Applied Energy, Elsevier, vol. 86(3), pages 310-316, March.
    14. Manikandan, G.K. & Iniyan, S. & Goic, Ranko, 2019. "Enhancing the optical and thermal efficiency of a parabolic trough collector – A review," Applied Energy, Elsevier, vol. 235(C), pages 1524-1540.
    15. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Liu, Luyao, 2022. "Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of a novel partially covered parabolic trough photovoltaic thermal collector based on life cycle method," Renewable Energy, Elsevier, vol. 200(C), pages 1573-1588.
    16. Xiao, Hui & Liu, Peng & Liu, Zhichun & Liu, Wei, 2021. "Performance analyses in parabolic trough collectors by inserting novel inclined curved-twisted baffles," Renewable Energy, Elsevier, vol. 165(P2), pages 14-27.
    17. Francesco Calise & Laura Vanoli, 2012. "Parabolic Trough Photovoltaic/Thermal Collectors: Design and Simulation Model," Energies, MDPI, vol. 5(10), pages 1-23, October.
    18. Jamal-Abad, Milad Tajik & Saedodin, Seyfollah & Aminy, Mohammad, 2017. "Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media," Renewable Energy, Elsevier, vol. 107(C), pages 156-163.
    19. Norouzi, Amir Mohammad & Siavashi, Majid & Khaliji Oskouei, MohammadHasan, 2020. "Efficiency enhancement of the parabolic trough solar collector using the rotating absorber tube and nanoparticles," Renewable Energy, Elsevier, vol. 145(C), pages 569-584.
    20. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Słowik, Adam & Cpałka, Krzysztof & Xue, Yu & Hapka, Aneta, 2024. "An efficient approach to parameter extraction of photovoltaic cell models using a new population-based algorithm," Applied Energy, Elsevier, vol. 364(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Alamdari, Pedram & Khatamifar, Mehdi & Lin, Wenxian, 2024. "Heat loss analysis review: Parabolic trough and linear Fresnel collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Amein, Hamza & Akoush, Bassem M. & El-Bakry, M. Medhat & Abubakr, Mohamed & Hassan, Muhammed A., 2022. "Enhancing the energy utilization in parabolic trough concentrators with cracked heat collection elements using a cost-effective rotation mechanism," Renewable Energy, Elsevier, vol. 181(C), pages 250-266.
    4. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Xu, Jing-wen & Jin, Yi-hao, 2021. "Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator," Renewable Energy, Elsevier, vol. 169(C), pages 1229-1241.
    5. Jing-hu, Gong & Yong, Li & Jun, Wang & Lund, Peter, 2023. "Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology," Energy, Elsevier, vol. 268(C).
    6. Amein, Hamza & Kassem, Mahmoud A. & Ali, Shady & Hassan, Muhammed A., 2021. "Integration of transparent insulation shells in linear solar receivers for enhanced energy and exergy performances," Renewable Energy, Elsevier, vol. 171(C), pages 344-359.
    7. Gürbüz, Emine Yağız & Şahinkesen, İstemihan & Tuncer, Azim Doğuş & Keçebaş, Ali, 2023. "Design and experimental analysis of a parallel-flow photovoltaic-thermal air collector with finned latent heat thermal energy storage unit," Renewable Energy, Elsevier, vol. 217(C).
    8. Salari, Ali & Shakibi, Hamid & Soltani, Shohreh & Kazemian, Arash & Ma, Tao, 2024. "Optimization assessment and performance analysis of an ingenious hybrid parabolic trough collector: A machine learning approach," Applied Energy, Elsevier, vol. 353(PA).
    9. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Wang, Qiushi & Liu, Luyao, 2023. "Multi-criteria performance analysis and optimization of a solar-driven CCHP system based on PEMWE, SOFC, TES, and novel PVT for hotel and office buildings," Renewable Energy, Elsevier, vol. 206(C), pages 1249-1264.
    10. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Xiaomeng & Liu, Luyao, 2022. "Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of a novel partially covered parabolic trough photovoltaic thermal collector based on life cycle method," Renewable Energy, Elsevier, vol. 200(C), pages 1573-1588.
    11. Shaaban, S., 2021. "Enhancement of the solar trough collector efficiency by optimizing the reflecting mirror profile," Renewable Energy, Elsevier, vol. 176(C), pages 40-49.
    12. Gülşah Karaca Dolgun & Onur Vahip Güler & Aleksandar G. Georgiev & Ali Keçebaş, 2023. "Experimental Investigation of a Concentrating Bifacial Photovoltaic/Thermal Heat Pump System with a Triangular Trough," Energies, MDPI, vol. 16(2), pages 1-20, January.
    13. Kazemian, Arash & Ma, Tao & Hongxing, Yang, 2024. "Evaluation of various collector configurations for a photovoltaic thermal system to achieve high performance, low cost, and lightweight," Applied Energy, Elsevier, vol. 357(C).
    14. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi, 2023. "Comprehensive sustainability assessment of a novel solar-driven PEMEC-SOFC-based combined cooling, heating, power, and storage (CCHPS) system based on life cycle method," Energy, Elsevier, vol. 265(C).
    15. Xiao, Gang & Zheng, Guanghua & Ni, Dong & Li, Qiang & Qiu, Min & Ni, Mingjiang, 2018. "Thermodynamic assessment of solar photon-enhanced thermionic conversion," Applied Energy, Elsevier, vol. 223(C), pages 134-145.
    16. Varun, K. & Arunachala, U.C. & Elton, D.N., 2020. "Trade-off between wire matrix and twisted tape: SOLTRACE® based indoor study of parabolic trough collector," Renewable Energy, Elsevier, vol. 156(C), pages 478-492.
    17. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, Puthuveettil Sreedharan, 2017. "Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 655-669.
    18. Zaharil, H.A. & Hasanuzzaman, M., 2020. "Modelling and performance analysis of parabolic trough solar concentrator for different heat transfer fluids under Malaysian condition," Renewable Energy, Elsevier, vol. 149(C), pages 22-41.
    19. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    20. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123007607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.