IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p116-d710367.html
   My bibliography  Save this article

Turning Waste Cooking Oils into Biofuels—Valorization Technologies: A Review

Author

Listed:
  • Lucas Nascimento

    (CVR—Centre for Waste Valorisation, University of Minho, 4800042 Guimaraes, Portugal)

  • André Ribeiro

    (CVR—Centre for Waste Valorisation, University of Minho, 4800042 Guimaraes, Portugal)

  • Ana Ferreira

    (CVR—Centre for Waste Valorisation, University of Minho, 4800042 Guimaraes, Portugal)

  • Nádia Valério

    (CVR—Centre for Waste Valorisation, University of Minho, 4800042 Guimaraes, Portugal)

  • Vânia Pinheiro

    (CVR—Centre for Waste Valorisation, University of Minho, 4800042 Guimaraes, Portugal)

  • Jorge Araújo

    (CVR—Centre for Waste Valorisation, University of Minho, 4800042 Guimaraes, Portugal)

  • Cândida Vilarinho

    (Departamento de Engenharia Mecânica, Campus de Azurém, Universidade do Minho, 4800058 Guimaraes, Portugal)

  • Joana Carvalho

    (CVR—Centre for Waste Valorisation, University of Minho, 4800042 Guimaraes, Portugal)

Abstract

In search of a more sustainable society, humanity has been looking to reduce the environmental impacts caused by its various activities. The energy sector corresponds to one of the most impactful activities since most energies produced come from fossil fuels, such as oil and coal, which are finite resources. Moreover, their inherent processes to convert energy into electricity emit various pollutants, which are responsible for global warming, eutrophication, and acidification of soil and marine environments. Biofuels are one of the alternatives to fossil fuels, and the raw material used for their production includes vegetable oils, wood and agricultural waste, municipal waste, and waste cooking oils (WCOs). The conventional route for WCO valorization is the production of biodiesel, which, as all recovery technologies, presents advantages and disadvantages that must be explored from a technical and economic perspective. Despite its successful use in the production of biodiesel, it should be noticed that there are other approaches to use WCO. Among them, thermochemical technologies can be applied to produce alternative fuels through cracking or hydrocracking, pyrolysis, and gasification processes. For each technology, the best conditions were identified, and finally, projects and companies that work with this type of technology and use WCO were identified.

Suggested Citation

  • Lucas Nascimento & André Ribeiro & Ana Ferreira & Nádia Valério & Vânia Pinheiro & Jorge Araújo & Cândida Vilarinho & Joana Carvalho, 2021. "Turning Waste Cooking Oils into Biofuels—Valorization Technologies: A Review," Energies, MDPI, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:116-:d:710367
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/116/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/116/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peters, Jörg & Thielmann, Sascha, 2008. "Promoting biofuels: Implications for developing countries," Energy Policy, Elsevier, vol. 36(4), pages 1538-1544, April.
    2. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    3. repec:zbw:rwirep:0038 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Estevez & Laura Aguado-Deblas & Francisco J. López-Tenllado & Carlos Luna & Juan Calero & Antonio A. Romero & Felipa M. Bautista & Diego Luna, 2022. "Biodiesel Is Dead: Long Life to Advanced Biofuels—A Comprehensive Critical Review," Energies, MDPI, vol. 15(9), pages 1-39, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yong & Bao, Xiangtai & Ren, Gang & Cai, Xiaohua & Li, Jian, 2012. "Analysing the status, obstacles and recommendations for WCOs of restaurants as biodiesel feedstocks in China from supply chain’ perspectives," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 20-37.
    2. Yang, Liuqing & Takase, Mohammed & Zhang, Min & Zhao, Ting & Wu, Xiangyang, 2014. "Potential non-edible oil feedstock for biodiesel production in Africa: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 461-477.
    3. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    4. Sarin, Amit & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K., 2010. "Natural and synthetic antioxidants: Influence on the oxidative stability of biodiesel synthesized from non-edible oil," Energy, Elsevier, vol. 35(12), pages 4645-4648.
    5. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    6. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sharma, Meeta & Malhotra, R.K., 2009. "Influence of metal contaminants on oxidation stability of Jatropha biodiesel," Energy, Elsevier, vol. 34(9), pages 1271-1275.
    7. James Thurlow & Giacomo Branca & Erika Felix & Irini Maltsoglou & Luis E. Rincón, 2016. "Producing Biofuels in Low-Income Countries: An Integrated Environmental and Economic Assessment for Tanzania," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 153-171, June.
    8. Devin Moeller & Heidi L. Sieverding & James J. Stone, 2017. "Comparative Farm-Gate Life Cycle Assessment of Oilseed Feedstocks in the Northern Great Plains," Biophysical Economics and Resource Quality, Springer, vol. 2(4), pages 1-16, December.
    9. Li, Zhuoxue & Yang, Depo & Huang, Miaoling & Hu, Xinjun & Shen, Jiangang & Zhao, Zhimin & Chen, Jianping, 2012. "Chrysomya megacephala (Fabricius) larvae: A new biodiesel resource," Applied Energy, Elsevier, vol. 94(C), pages 349-354.
    10. José Hidalgo-Crespo & César I. Alvarez-Mendoza & Manuel Soto & Jorge Luis Amaya-Rivas, 2022. "Towards a Circular Economy Development for Household Used Cooking Oil in Guayaquil: Quantification, Characterization, Modeling, and Geographical Mapping," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    11. M. Mofijur & F. Kusumo & I. M. Rizwanul Fattah & H. M. Mahmudul & M. G. Rasul & A. H. Shamsuddin & T. M. I. Mahlia, 2020. "Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production," Energies, MDPI, vol. 13(7), pages 1-15, April.
    12. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    13. Cheng, Jay J. & Timilsina, Govinda R., 2011. "Status and barriers of advanced biofuel technologies: A review," Renewable Energy, Elsevier, vol. 36(12), pages 3541-3549.
    14. Adhirath Mandal & HaengMuk Cho & Bhupendra Singh Chauhan, 2022. "Experimental Investigation of Multiple Fry Waste Soya Bean Oil in an Agricultural CI Engine," Energies, MDPI, vol. 15(9), pages 1-14, April.
    15. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    16. Diermeier, Matthias & Schmidt, Torsten, 2014. "Oil price effects on land use competition: an empirical analysis," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 15(1), pages 1-17.
    17. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    18. Yaakob, Zahira & Mohammad, Masita & Alherbawi, Mohammad & Alam, Zahangir & Sopian, Kamaruzaman, 2013. "Overview of the production of biodiesel from Waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 184-193.
    19. Kalim Shah & George Philippidis & Hari Dulal & Gernot Brodnig, 2014. "Developing biofuels industry in small economies: Policy experiences and lessons from the caribbean basin initiative," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(2), pages 229-253, February.
    20. Adhirath Mandal & Dowan Cha & HaengMuk Cho, 2023. "Impact of Waste Fry Biofuel on Diesel Engine Performance and Emissions," Energies, MDPI, vol. 16(9), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:116-:d:710367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.