IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p724-d1028595.html
   My bibliography  Save this article

Design and Comprehensive Analyzes of a Highly Efficient TLA-Type Synchronous Reluctance Machine including the Effects of Conductor per Slot and Wire Size

Author

Listed:
  • Ali Ozdil

    (Department of Electrical and Electronics Engineering, Kirsehir Ahi Evran University, Kirsehir 40100, Turkey)

  • Yunus Uzun

    (Department of Electrical and Electronics Engineering, Aksaray University, Aksaray 68135, Turkey)

Abstract

Consuming energy sources and greenhouse gas emission are one of the most prominent problems of the latest century. Most of the energy consumed globally and carbon dioxide emissions originate from electric motors used in the industry. Therefore, researchers have recently focused on the production of highly efficient, eco-friendly, and low-priced machines: Synchronous Reluctance Machines. In this study, the design and comprehensive Finite Element Analysis of a TLA-SynRM including the effects of the number of conductors per slot and wire diameter directly affecting stator slot fill factor and crucial for obtaining more realistic results from experiments has been initially carried out. Moreover, power factor, saliency ratio, and efficiency of the novel SynRM are enhanced by utilizing a fine-tuning process based on d - and q -axes flux paths. Additionally, the layer structure of the initial design is changed to a double-layer structure to improve the performance of the machine in the fine-tuning process. In the final step of this study, the machine has been manufactured, and experiments have been accomplished. This study has concluded that the novel SynRM have low torque ripple, high power factor, saliency ratio, and efficiency, whose value is within the range of IE5 efficiency class.

Suggested Citation

  • Ali Ozdil & Yunus Uzun, 2023. "Design and Comprehensive Analyzes of a Highly Efficient TLA-Type Synchronous Reluctance Machine including the Effects of Conductor per Slot and Wire Size," Energies, MDPI, vol. 16(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:724-:d:1028595
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/724/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/724/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Nabil Fathy Ibrahim & Peter Sergeant & Essam Rashad, 2016. "Simple Design Approach for Low Torque Ripple and High Output Torque Synchronous Reluctance Motors," Energies, MDPI, vol. 9(11), pages 1-14, November.
    2. Florin Pop-Pîgleşan & Adrian-Cornel Pop & Claudia Marțiş, 2021. "Synchronous Reluctance Machines for Automotive Cooling Fan Systems: Numerical and Experimental Study of Different Slot-Pole Combinations and Winding Types," Energies, MDPI, vol. 14(2), pages 1-28, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marko Merdžan, 2021. "Performance Analysis of High-Speed Electric Machines Supplied by PWM Inverters Based on the Harmonic Modeling Method," Energies, MDPI, vol. 14(9), pages 1-35, May.
    2. Hamidreza Heidari & Anton Rassõlkin & Ants Kallaste & Toomas Vaimann & Ekaterina Andriushchenko & Anouar Belahcen & Dmitry V. Lukichev, 2021. "A Review of Synchronous Reluctance Motor-Drive Advancements," Sustainability, MDPI, vol. 13(2), pages 1-37, January.
    3. Pavol Rafajdus & Valeria Hrabovcova & Pavel Lehocky & Pavol Makys & Filip Holub, 2018. "Effect of Saturation on Field Oriented Control of the New Designed Reluctance Synchronous Motor," Energies, MDPI, vol. 11(11), pages 1-10, November.
    4. Chih-Hong Lin & Chang-Chou Hwang, 2018. "High Performances Design of a Six-Phase Synchronous Reluctance Motor Using Multi-Objective Optimization with Altered Bee Colony Optimization and Taguchi Method," Energies, MDPI, vol. 11(10), pages 1-14, October.
    5. João F. P. Fernandes & Pedro P. C. Bhagubai & Paulo J. C. Branco, 2022. "Recent Developments in Electrical Machine Design for the Electrification of Industrial and Transportation Systems," Energies, MDPI, vol. 15(17), pages 1-13, September.
    6. Ryszard Palka & Kamil Cierzniewski & Marcin Wardach & Pawel Prajzendanc, 2023. "Research on Innovative Hybrid Excited Synchronous Machine," Energies, MDPI, vol. 16(18), pages 1-14, September.
    7. Giuseppe Fabri & Antonio Ometto & Marco Villani & Gino D’Ovidio, 2022. "A Battery-Free Sustainable Powertrain Solution for Hydrogen Fuel Cell City Transit Bus Application," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    8. Hegazy Rezk & Kotb B. Tawfiq & Peter Sergeant & Mohamed N. Ibrahim, 2021. "Optimal Rotor Design of Synchronous Reluctance Machines Considering the Effect of Current Angle," Mathematics, MDPI, vol. 9(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:724-:d:1028595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.