IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6147-d896480.html
   My bibliography  Save this article

Mathematical Model Derivation and Experimental Verification of Novel Consequent-Pole Adjustable Speed PM Motor

Author

Listed:
  • Akihisa Hattori

    (Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan
    Environment Neutral System Development Divison, DENSO CORPORATION, Kariya 448-8661, Japan)

  • Toshihiko Noguchi

    (Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan)

  • Kazuhiro Murakami

    (Energy Management Group, DENSO CORPORATION, Kariya 448-8661, Japan)

Abstract

This paper proposes a novel consequent-pole-type PM motor having a structure different from that of conventional consequent-pole-type PM motors. The proposed rotor structure is composed of a magnetic pole pair using a permanent magnet and an image-pole pair using a high permeability core. The windings facing the magnetic pole pair and the image-pole pair are connected in series in the rotor structure, the three-phase synchronous impedance is balanced, and the d -axis inductance is increased. Therefore, compared with the conventional consequent-pole type, the field weakening operation can be performed efficiently with a lower d -axis current. These advantages make it possible to expand the operating range during field weakening. Furthermore, to fix the driving control method of the proposed consequent-pole PM motor, the voltage equation of the proposed motor is derived and verified by analysis and experiment. In addition, the essential characteristics of the proposed motor were compared with that of a standard surface permanent magnet (SPM) motor and a conventional consequent-pole PM motor.

Suggested Citation

  • Akihisa Hattori & Toshihiko Noguchi & Kazuhiro Murakami, 2022. "Mathematical Model Derivation and Experimental Verification of Novel Consequent-Pole Adjustable Speed PM Motor," Energies, MDPI, vol. 15(17), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6147-:d:896480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhiyan Zhang & Ming Zhang & Jing Yin & Jie Wu & Cunxiang Yang, 2022. "An Analytical Method for Calculating the Cogging Torque of a Consequent Pole Hybrid Excitation Synchronous Machine Based on Spatial 3D Field Simplification," Energies, MDPI, vol. 15(3), pages 1-13, January.
    2. Dong-Kyu Lee & Jong-Suk Ro, 2020. "Analysis and Design of a High-Performance Traction Motor for Heavy-Duty Vehicles," Energies, MDPI, vol. 13(12), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Si-Woo Song & Min-Ki Hong & Ju Lee & Won-Ho Kim, 2022. "A Study on Reduction of Cogging Torque and Magnet Usage through Intersect Magnet Consequent Pole Structure," Energies, MDPI, vol. 15(23), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marko Merdžan, 2021. "Performance Analysis of High-Speed Electric Machines Supplied by PWM Inverters Based on the Harmonic Modeling Method," Energies, MDPI, vol. 14(9), pages 1-35, May.
    2. Gustav Mörée & Mats Leijon, 2022. "Overview of Hybrid Excitation in Electrical Machines," Energies, MDPI, vol. 15(19), pages 1-38, October.
    3. Surat Khan & Abdin Pasund & Naseer Ahmad & Shoaib Ahmed & Hamid Ali Khan & Khalid Mehmood Cheema & Ahmad H. Milyani, 2022. "Performance Investigation and Cogging Torque Reduction in a Novel Modular Stator PM Flux Reversal Machine," Energies, MDPI, vol. 15(6), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6147-:d:896480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.