Short-Term Load Forecasting Using Encoder-Decoder WaveNet: Application to the French Grid
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rahman, Aowabin & Srikumar, Vivek & Smith, Amanda D., 2018. "Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 212(C), pages 372-385.
- Hongze Li & Hongyu Liu & Hongyan Ji & Shiying Zhang & Pengfei Li, 2020. "Ultra-Short-Term Load Demand Forecast Model Framework Based on Deep Learning," Energies, MDPI, vol. 13(18), pages 1-16, September.
- Sadaei, Hossein Javedani & de Lima e Silva, Petrônio Cândido & Guimarães, Frederico Gadelha & Lee, Muhammad Hisyam, 2019. "Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series," Energy, Elsevier, vol. 175(C), pages 365-377.
- Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
- Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).
- Zeng, Yu-Rong & Zeng, Yi & Choi, Beomjin & Wang, Lin, 2017. "Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network," Energy, Elsevier, vol. 127(C), pages 381-396.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
- Chun-Ming Xu & Jia-Shuai Zhang & Ling-Qiang Kong & Xue-Bo Jin & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su & Hui-Jun Ma & Prasun Chakrabarti, 2022. "Prediction Model of Wastewater Pollutant Indicators Based on Combined Normalized Codec," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Deng, Song & Dong, Xia & Tao, Li & Wang, Junjie & He, Yi & Yue, Dong, 2024. "Multi-type load forecasting model based on random forest and density clustering with the influence of noise and load patterns," Energy, Elsevier, vol. 307(C).
- Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
- Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
- Bilgili, Mehmet & Pinar, Engin, 2023. "Gross electricity consumption forecasting using LSTM and SARIMA approaches: A case study of Türkiye," Energy, Elsevier, vol. 284(C).
- Jacob Hale & Suzanna Long, 2020. "A Time Series Sustainability Assessment of a Partial Energy Portfolio Transition," Energies, MDPI, vol. 14(1), pages 1-14, December.
- Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
- Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
- Vasileios Laitsos & Georgios Vontzos & Paschalis Paraschoudis & Eleftherios Tsampasis & Dimitrios Bargiotas & Lefteri H. Tsoukalas, 2024. "The State of the Art Electricity Load and Price Forecasting for the Modern Wholesale Electricity Market," Energies, MDPI, vol. 17(22), pages 1-37, November.
- Peng, Lu & Wang, Lin & Xia, De & Gao, Qinglu, 2022. "Effective energy consumption forecasting using empirical wavelet transform and long short-term memory," Energy, Elsevier, vol. 238(PB).
- Wang, Qiang & Song, Xiaoxin, 2019. "Forecasting China's oil consumption: A comparison of novel nonlinear-dynamic grey model (GM), linear GM, nonlinear GM and metabolism GM," Energy, Elsevier, vol. 183(C), pages 160-171.
- Zou, Rongwei & Yang, Qiliang & Xing, Jianchun & Zhou, Qizhen & Xie, Liqiang & Chen, Wenjie, 2024. "Predicting the electric power consumption of office buildings based on dynamic and static hybrid data analysis," Energy, Elsevier, vol. 290(C).
- Karakurt, Izzet, 2021. "Modelling and forecasting the oil consumptions of the BRICS-T countries," Energy, Elsevier, vol. 220(C).
- Xiwen Cui & Shaojun E & Dongxiao Niu & Dongyu Wang & Mingyu Li, 2021. "An Improved Forecasting Method and Application of China’s Energy Consumption under the Carbon Peak Target," Sustainability, MDPI, vol. 13(15), pages 1-21, August.
- Donghun Lee & Jongeun Kim & Suhee Kim & Kwanho Kim, 2023. "Comparison Analysis for Electricity Consumption Prediction of Multiple Campus Buildings Using Deep Recurrent Neural Networks," Energies, MDPI, vol. 16(24), pages 1-13, December.
- Xue-Bo Jin & Wei-Zhen Zheng & Jian-Lei Kong & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Seng Lin, 2021. "Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization," Energies, MDPI, vol. 14(6), pages 1-18, March.
- Jiang, Yuqi & Gao, Tianlu & Dai, Yuxin & Si, Ruiqi & Hao, Jun & Zhang, Jun & Gao, David Wenzhong, 2022. "Very short-term residential load forecasting based on deep-autoformer," Applied Energy, Elsevier, vol. 328(C).
- Chou, Jui-Sheng & Truong, Dinh-Nhat & Kuo, Ching-Chiun, 2021. "Imaging time-series with features to enable visual recognition of regional energy consumption by bio-inspired optimization of deep learning," Energy, Elsevier, vol. 224(C).
- Xiao, Jin & Li, Yuxi & Xie, Ling & Liu, Dunhu & Huang, Jing, 2018. "A hybrid model based on selective ensemble for energy consumption forecasting in China," Energy, Elsevier, vol. 159(C), pages 534-546.
- Somu, Nivethitha & Raman M R, Gauthama & Ramamritham, Krithi, 2021. "A deep learning framework for building energy consumption forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
More about this item
Keywords
time series forecasting; energy consumption forecasting; deep learning; machine learning; convolutional neural networks; artificial neural networks; causal convolutions; dilated convolutions; encoder-decoder;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2524-:d:545124. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.