IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124011960.html
   My bibliography  Save this article

Gran Canaria energy system: Integration of the chira-soria pumped hydroelectric power plant and analysis of weekly daily demand patterns for the year 2023

Author

Listed:
  • Lozano Medina, Juan Carlos
  • Henríquez Concepción, Vicente
  • León Zerpa, Federico Antonio
  • Mendieta Pino, Carlos A.

Abstract

Due to its insular condition, Gran Canaria operates an isolated energy system that requires high self-sufficiency in energy generation and that covers its energy need, 3,327,872.76 MWh/year. The future integration of the Chira-Soria Pumped Hydroelectric Power Plant, scheduled for 2030, is expected to radically transform the energy dynamics of Gran Canaria's electricity system, facing different challenges and opportunities. Challenges include the need for greater flexibility due to growing renewable energy sources, going from 381,000 MW of renewables today to an increase of more than 750,000 MW, environmental commitments, and the operation must address potential operational constraints related to downstream hydrological effects. On the other hand, the opportunities lie in the ability of the reversible hydropower plant to provide balancing services during off-peak hours, improving the integration of intermittent energy sources such as wind and solar power, in addition, the Pumped Hydroelectric (PHES) technology is recognized as mature and efficient for large-scale energy storage, contributing significantly to the integration of renewable energy sources. Implementing innovative approaches such as integrating Big Data into construction projects can also improve efficiency and decision-making in the project delivery process. This facility will facilitate energy storage through the pumping of water at high levels, allowing it to be subsequently turbined in periods of high demand, which will be essential to improve the management and efficiency of the island's energy system. This energy demand will be studied, which follows certain patterns according to the day of the week and, continuing with the line of research established in previous works, a detailed analysis of the existing system, simulation and algorithmic optimization of the integration of the Chira-Soria Pumped Hydroelectric Power Plant into the energy system of Gran Canaria in the year 2023 will be carried out, providing the expected results of such optimal integration by differentiating the demand patterns of each day of the week, previously establishing these annual representative days.

Suggested Citation

  • Lozano Medina, Juan Carlos & Henríquez Concepción, Vicente & León Zerpa, Federico Antonio & Mendieta Pino, Carlos A., 2024. "Gran Canaria energy system: Integration of the chira-soria pumped hydroelectric power plant and analysis of weekly daily demand patterns for the year 2023," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011960
    DOI: 10.1016/j.renene.2024.121128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124011960
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Turbine; Hydroelectric; Pumps; Energy; CO2; Fuel; Environment;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.