IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2060-d532132.html
   My bibliography  Save this article

Impact of Water Temperature Changes on Water Loss Monitoring in Large District Heating Systems

Author

Listed:
  • Olgierd Niemyjski

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 20 Nowowiejska Street, 00-653 Warsaw, Poland)

  • Ryszard Zwierzchowski

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, 20 Nowowiejska Street, 00-653 Warsaw, Poland)

Abstract

This paper explores how water temperature changes in a district heating system (DHS) impact the monitoring of water losses. Water volume in DHS is constantly monitored, recorded, and replenished. The leakage and failure status of the DHS is often monitored through measuring the make-up water flow rate. In this paper, we present the methodology and a simplified model of the dynamics of the heating system operation, which was used to determine the profile of changes in the average temperature and density of water in the system. The mathematical model of the district heating network (DHN) was verified by comparing the results of simulation calculations, i.e., calculated values of the temperature of water returning to the heat source, with the measured values. Fluctuations in water temperature cause changes in the density and volume of water in the DHN, which affect the amount of water supplementing the system. This is particularly noticeable in a DHN with a large water volume. The study reports an analysis of measurement results of operating parameters of a major DHS in Poland (city of Szczecin). Hourly measurements were made of supply and return water temperature, water flow rate, and pressure throughout the whole of 2019. The water volume of the analyzed DHN is almost 42,000 m 3 and the changes in water volume per hour are as high as 5 m 3 /h, representing 20–30% of the value of the make-up water flow rate. The analysis showed that systems for monitoring the tightness of the DHS and detecting failures, on the basis of measurements of the make-up water flow rate, should take into account the dynamics of water volume changes in the DHN.

Suggested Citation

  • Olgierd Niemyjski & Ryszard Zwierzchowski, 2021. "Impact of Water Temperature Changes on Water Loss Monitoring in Large District Heating Systems," Energies, MDPI, vol. 14(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2060-:d:532132
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2060/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tol, H.İ. & Svendsen, S., 2012. "Improving the dimensioning of piping networks and network layouts in low-energy district heating systems connected to low-energy buildings: A case study in Roskilde, Denmark," Energy, Elsevier, vol. 38(1), pages 276-290.
    2. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    3. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Blanes-Peiró, Jorge-Juan, 2016. "District heating and cogeneration in the EU-28: Current situation, potential and proposed energy strategy for its generalisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 621-639.
    4. Borna Doračić & Tomislav Novosel & Tomislav Pukšec & Neven Duić, 2018. "Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat," Energies, MDPI, vol. 11(3), pages 1-14, March.
    5. Noussan, Michel & Jarre, Matteo & Poggio, Alberto, 2017. "Real operation data analysis on district heating load patterns," Energy, Elsevier, vol. 129(C), pages 70-78.
    6. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    7. Buffa, Simone & Cozzini, Marco & D’Antoni, Matteo & Baratieri, Marco & Fedrizzi, Roberto, 2019. "5th generation district heating and cooling systems: A review of existing cases in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 504-522.
    8. Bordin, Chiara & Gordini, Angelo & Vigo, Daniele, 2016. "An optimization approach for district heating strategic network design," European Journal of Operational Research, Elsevier, vol. 252(1), pages 296-307.
    9. Cristina Sáez Blázquez & Arturo Farfán Martín & Ignacio Martín Nieto & Diego González-Aguilera, 2018. "Economic and Environmental Analysis of Different District Heating Systems Aided by Geothermal Energy," Energies, MDPI, vol. 11(5), pages 1-17, May.
    10. Guelpa, Elisa & Toro, Claudia & Sciacovelli, Adriano & Melli, Roberto & Sciubba, Enrico & Verda, Vittorio, 2016. "Optimal operation of large district heating networks through fast fluid-dynamic simulation," Energy, Elsevier, vol. 102(C), pages 586-595.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neri, Manfredi & Guelpa, Elisa & Verda, Vittorio, 2022. "Design and connection optimization of a district cooling network: Mixed integer programming and heuristic approach," Applied Energy, Elsevier, vol. 306(PA).
    2. Soheil Kavian & Mohsen Saffari Pour & Ali Hakkaki-Fard, 2019. "Optimized Design of the District Heating System by Considering the Techno-Economic Aspects and Future Weather Projection," Energies, MDPI, vol. 12(9), pages 1-30, May.
    3. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    4. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    5. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    6. Pakere, Ieva & Gravelsins, Armands & Lauka, Dace & Bazbauers, Gatis & Blumberga, Dagnija, 2021. "Linking energy efficiency policies toward 4th generation district heating system," Energy, Elsevier, vol. 234(C).
    7. Brange, Lisa & Lauenburg, Patrick & Sernhed, Kerstin & Thern, Marcus, 2017. "Bottlenecks in district heating networks and how to eliminate them – A simulation and cost study," Energy, Elsevier, vol. 137(C), pages 607-616.
    8. Wang, Hai & Wang, Haiying & Haijian, Zhou & Zhu, Tong, 2017. "Optimization modeling for smart operation of multi-source district heating with distributed variable-speed pumps," Energy, Elsevier, vol. 138(C), pages 1247-1262.
    9. Omais Abdur Rehman & Valeria Palomba & Andrea Frazzica & Luisa F. Cabeza, 2021. "Enabling Technologies for Sector Coupling: A Review on the Role of Heat Pumps and Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-30, December.
    10. Michele Tunzi & Matthieu Ruysschaert & Svend Svendsen & Kevin Michael Smith, 2020. "Double Loop Network for Combined Heating and Cooling in Low Heat Density Areas," Energies, MDPI, vol. 13(22), pages 1-24, November.
    11. Simeoni, Patrizia & Ciotti, Gellio & Cottes, Mattia & Meneghetti, Antonella, 2019. "Integrating industrial waste heat recovery into sustainable smart energy systems," Energy, Elsevier, vol. 175(C), pages 941-951.
    12. Angelidis, O. & Ioannou, A. & Friedrich, D. & Thomson, A. & Falcone, G., 2023. "District heating and cooling networks with decentralised energy substations: Opportunities and barriers for holistic energy system decarbonisation," Energy, Elsevier, vol. 269(C).
    13. Danhong Wang & Jan Carmeliet & Kristina Orehounig, 2021. "Design and Assessment of District Heating Systems with Solar Thermal Prosumers and Thermal Storage," Energies, MDPI, vol. 14(4), pages 1-27, February.
    14. Wang, Hai & Meng, Hua, 2018. "Improved thermal transient modeling with new 3-order numerical solution for a district heating network with consideration of the pipe wall's thermal inertia," Energy, Elsevier, vol. 160(C), pages 171-183.
    15. Robin Zeh & Björn Ohlsen & David Philipp & David Bertermann & Tim Kotz & Nikola Jocić & Volker Stockinger, 2021. "Large-Scale Geothermal Collector Systems for 5th Generation District Heating and Cooling Networks," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    16. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Serafeim Moustakidis & Ioannis Meintanis & George Halikias & Nicos Karcanias, 2019. "An Innovative Control Framework for District Heating Systems: Conceptualisation and Preliminary Results," Resources, MDPI, vol. 8(1), pages 1-15, January.
    18. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    19. Doračić, Borna & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2020. "The effect of different parameters of the excess heat source on the levelized cost of excess heat," Energy, Elsevier, vol. 201(C).
    20. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2060-:d:532132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.