IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1932-d527645.html
   My bibliography  Save this article

Influence of the Selection of the Core Shape and Winding Arrangement on the Accuracy of Current Transformers with Through-Going Primary Cable

Author

Listed:
  • Elzbieta Lesniewska

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

Abstract

The current transformers with split-core are used for installation in places where it is impossible to install classic current transformers. Moreover, this design allows for any measurement location change, and even switching one current transformer into several different shapes of bars or cables. Power network operators, striving for more accurate current measurements, require producers to provide current transformers with a special accuracy class 0.2S. Therefore, manufacturers and designers try to meet the market requirements and, similarly to non-demountable current transformers, i.e., with a toroidal core, design current transformers with split-core class 0.2S. To meet the high metrological requirements, 3D analyses of electromagnetic fields were performed, taking into account physical phenomena and not approximate analytical models. Two types of cores and four different arrangements of the secondary windings of the measuring current transformers were considered. The magnetic field distributions, current error, and phase displacement diagrams of all current transformer models were analyzed, and the model of the transformer structure with the best accuracy was selected. Computations were conducted based on the finite element numerical method, and the results were compared with the real model tests.

Suggested Citation

  • Elzbieta Lesniewska, 2021. "Influence of the Selection of the Core Shape and Winding Arrangement on the Accuracy of Current Transformers with Through-Going Primary Cable," Energies, MDPI, vol. 14(7), pages 1-13, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1932-:d:527645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michal Kaczmarek & Piotr Kaczmarek, 2020. "Comparison of the Wideband Power Sources Used to Supply Step-Up Current Transformers for Generation of Distorted Currents," Energies, MDPI, vol. 13(7), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Dems & Krzysztof Komeza & Zbigniew Gmyrek & Jacek Szulakowski, 2022. "The Effect of Sample’s Dimension and Cutting Technology on Magnetization and Specific Iron Losses of FeSi Laminations," Energies, MDPI, vol. 15(6), pages 1-22, March.
    2. Elzbieta Lesniewska & Jan Olak, 2022. "Analysis of the Operation of Cascade Current Transformers for Measurements of Short-Circuit Currents with a Non-Periodic Component with a Large Time Constant of Its Decay," Energies, MDPI, vol. 15(8), pages 1-14, April.
    3. Elzbieta Lesniewska, 2022. "Modern Methods of Construction Problem Solving in Designing Various Types of Instrument Transformers," Energies, MDPI, vol. 15(21), pages 1-26, November.
    4. Michal Kaczmarek & Ernest Stano, 2023. "Challenges of Accurate Measurement of Distorted Current and Voltage in the Power Grid by Conventional Instrument Transformers," Energies, MDPI, vol. 16(6), pages 1-17, March.
    5. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2022. "Evaluation of the Current Shunt Influence on the Determined Wideband Accuracy of Inductive Current Transformers," Energies, MDPI, vol. 15(18), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michal Kaczmarek & Artur Szczęsny & Ernest Stano, 2022. "Operation of the Electronic Current Transformer for Transformation of Distorted Current Higher Harmonics," Energies, MDPI, vol. 15(12), pages 1-10, June.
    2. Michal Kaczmarek & Ernest Stano, 2023. "Review of Measuring Methods, Setups and Conditions for Evaluation of the Inductive Instrument Transformers Accuracy for Transformation of Distorted Waveforms," Energies, MDPI, vol. 16(11), pages 1-17, May.
    3. Michal Kaczmarek & Ernest Stano, 2021. "Why Should We Test the Wideband Transformation Accuracy of Medium Voltage Inductive Voltage Transformers?," Energies, MDPI, vol. 14(15), pages 1-16, July.
    4. Elzbieta Lesniewska & Michal Kaczmarek & Ernest Stano, 2020. "3D Electromagnetic Field Analysis Applied to Evaluate the Accuracy of a Voltage Transformer under Distorted Voltage," Energies, MDPI, vol. 14(1), pages 1-16, December.
    5. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2022. "The Effect of the Load Power Factor of the Inductive CT’s Secondary Winding on Its Distorted Current’s Harmonics Transformation Accuracy," Energies, MDPI, vol. 15(17), pages 1-11, August.
    6. Ernest Stano & Piotr Kaczmarek & Michal Kaczmarek, 2022. "Why Should We Test the Wideband Transformation Accuracy of Inductive Current Transformers?," Energies, MDPI, vol. 15(15), pages 1-12, August.
    7. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2022. "The Performance of the High-Current Transformer during Operation in the Wide Frequencies Range," Energies, MDPI, vol. 15(19), pages 1-15, September.
    8. Michal Kaczmarek, 2022. "Two Channels Opto-Isolation Circuit for Measurements of the Differential Voltage of Voltage Transformers and Dividers," Energies, MDPI, vol. 15(7), pages 1-15, April.
    9. Ernest Stano & Piotr Kaczmarek & Michal Kaczmarek, 2022. "Understanding the Frequency Characteristics of Current Error and Phase Displacement of the Corrected Inductive Current Transformer," Energies, MDPI, vol. 15(15), pages 1-16, July.
    10. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2022. "Evaluation of the Current Shunt Influence on the Determined Wideband Accuracy of Inductive Current Transformers," Energies, MDPI, vol. 15(18), pages 1-12, September.
    11. Dariusz Brodecki & Ernest Stano & Mateusz Andrychowicz & Piotr Kaczmarek, 2021. "EMC of Wideband Power Sources," Energies, MDPI, vol. 14(5), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1932-:d:527645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.