IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1457-d512310.html
   My bibliography  Save this article

EMC of Wideband Power Sources

Author

Listed:
  • Dariusz Brodecki

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

  • Ernest Stano

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

  • Mateusz Andrychowicz

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

  • Piotr Kaczmarek

    (Institute of Mechatronics and Information Systems, Lodz University of Technology, 90-924 Lodz, Poland)

Abstract

In this paper the results of the EMC tests of the wideband power sources: the PWM-based power source and audio power amplifier are discussed. They are intended to be used to supply the measuring system developed for evaluation of the wideband transformation accuracy of instrument transformers. Therefore, it is required to detect possible interferences that may be caused by the power supply to its operation and that may cause a decrease in its accuracy. The tests concern the conducted emission in the frequencies range from 150 kHz to 30 MHz and the radiated emission in the frequencies range from 30 MHz to 1 GHz. Moreover, the level of conducted disturbances in frequencies range from 100 Hz to 5 kHz generated into the supplying current is measured and the immunity of both wideband power sources to low frequency conductive disturbances in the supplying voltage and current is tested. Then, the voltage gain error and phase shift of the output voltage are measured. The EMC tests of both power sources show lack of compliance with the requirement of the standard IEC 61326-1. However, in system application of the audio power amplifier is possible if required increased immunity to conducted emission of the measuring system is ensured.

Suggested Citation

  • Dariusz Brodecki & Ernest Stano & Mateusz Andrychowicz & Piotr Kaczmarek, 2021. "EMC of Wideband Power Sources," Energies, MDPI, vol. 14(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1457-:d:512310
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goran Petrovic & Juraj Alojzije Bosnic & Goran Majic & Marin Despalatovic, 2019. "A Design of PWM Controlled Calibrator of Non-Sinusoidal Voltage Waveforms," Energies, MDPI, vol. 12(10), pages 1-14, May.
    2. Michal Kaczmarek & Piotr Kaczmarek, 2020. "Comparison of the Wideband Power Sources Used to Supply Step-Up Current Transformers for Generation of Distorted Currents," Energies, MDPI, vol. 13(7), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Kaczmarek & Artur Szczęsny & Ernest Stano, 2022. "Operation of the Electronic Current Transformer for Transformation of Distorted Current Higher Harmonics," Energies, MDPI, vol. 15(12), pages 1-10, June.
    2. Ernest Stano & Piotr Kaczmarek & Michal Kaczmarek, 2022. "Why Should We Test the Wideband Transformation Accuracy of Inductive Current Transformers?," Energies, MDPI, vol. 15(15), pages 1-12, August.
    3. Michal Kaczmarek & Ernest Stano, 2023. "Review of Measuring Methods, Setups and Conditions for Evaluation of the Inductive Instrument Transformers Accuracy for Transformation of Distorted Waveforms," Energies, MDPI, vol. 16(11), pages 1-17, May.
    4. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2022. "The Performance of the High-Current Transformer during Operation in the Wide Frequencies Range," Energies, MDPI, vol. 15(19), pages 1-15, September.
    5. Michal Kaczmarek & Ernest Stano, 2021. "Application of the Sinusoidal Voltage for Detection of the Resonance in Inductive Voltage Transformers," Energies, MDPI, vol. 14(21), pages 1-16, October.
    6. Michal Kaczmarek, 2022. "Two Channels Opto-Isolation Circuit for Measurements of the Differential Voltage of Voltage Transformers and Dividers," Energies, MDPI, vol. 15(7), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michal Kaczmarek & Artur Szczęsny & Ernest Stano, 2022. "Operation of the Electronic Current Transformer for Transformation of Distorted Current Higher Harmonics," Energies, MDPI, vol. 15(12), pages 1-10, June.
    2. Michal Kaczmarek & Ernest Stano, 2023. "Review of Measuring Methods, Setups and Conditions for Evaluation of the Inductive Instrument Transformers Accuracy for Transformation of Distorted Waveforms," Energies, MDPI, vol. 16(11), pages 1-17, May.
    3. Michal Kaczmarek & Ernest Stano, 2021. "Why Should We Test the Wideband Transformation Accuracy of Medium Voltage Inductive Voltage Transformers?," Energies, MDPI, vol. 14(15), pages 1-16, July.
    4. Elzbieta Lesniewska & Michal Kaczmarek & Ernest Stano, 2020. "3D Electromagnetic Field Analysis Applied to Evaluate the Accuracy of a Voltage Transformer under Distorted Voltage," Energies, MDPI, vol. 14(1), pages 1-16, December.
    5. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2022. "The Effect of the Load Power Factor of the Inductive CT’s Secondary Winding on Its Distorted Current’s Harmonics Transformation Accuracy," Energies, MDPI, vol. 15(17), pages 1-11, August.
    6. Elzbieta Lesniewska, 2021. "Influence of the Selection of the Core Shape and Winding Arrangement on the Accuracy of Current Transformers with Through-Going Primary Cable," Energies, MDPI, vol. 14(7), pages 1-13, March.
    7. Ernest Stano & Piotr Kaczmarek & Michal Kaczmarek, 2022. "Why Should We Test the Wideband Transformation Accuracy of Inductive Current Transformers?," Energies, MDPI, vol. 15(15), pages 1-12, August.
    8. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2022. "The Performance of the High-Current Transformer during Operation in the Wide Frequencies Range," Energies, MDPI, vol. 15(19), pages 1-15, September.
    9. Michal Kaczmarek, 2022. "Two Channels Opto-Isolation Circuit for Measurements of the Differential Voltage of Voltage Transformers and Dividers," Energies, MDPI, vol. 15(7), pages 1-15, April.
    10. Ernest Stano & Piotr Kaczmarek & Michal Kaczmarek, 2022. "Understanding the Frequency Characteristics of Current Error and Phase Displacement of the Corrected Inductive Current Transformer," Energies, MDPI, vol. 15(15), pages 1-16, July.
    11. Michal Kaczmarek & Piotr Kaczmarek & Ernest Stano, 2022. "Evaluation of the Current Shunt Influence on the Determined Wideband Accuracy of Inductive Current Transformers," Energies, MDPI, vol. 15(18), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1457-:d:512310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.