IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1890-d526206.html
   My bibliography  Save this article

Carbon Nanotube Films for Energy Applications

Author

Listed:
  • Monika Rdest

    (Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, UK)

  • Dawid Janas

    (Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland)

Abstract

This perspective article describes the application opportunities of carbon nanotube (CNT) films for the energy sector. Up to date progress in this regard is illustrated with representative examples of a wide range of energy management and transformation studies employing CNT ensembles. Firstly, this paper features an overview of how such macroscopic networks from nanocarbon can be produced. Then, the capabilities for their application in specific energy-related scenarios are described. Among the highlighted cases are conductive coatings, charge storage devices, thermal interface materials, and actuators. The selected examples demonstrate how electrical, thermal, radiant, and mechanical energy can be converted from one form to another using such formulations based on CNTs. The article is concluded with a future outlook, which anticipates the next steps which the research community will take to bring these concepts closer to implementation.

Suggested Citation

  • Monika Rdest & Dawid Janas, 2021. "Carbon Nanotube Films for Energy Applications," Energies, MDPI, vol. 14(7), pages 1-27, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1890-:d:526206
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1890/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1890/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pedro M.F.J. Costa & Ujjal K. Gautam & Yoshio Bando & Dmitri Golberg, 2011. "Direct imaging of Joule heating dynamics and temperature profiling inside a carbon nanotube interconnect," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    2. Xing Zhang & Zishan Wu & Xiao Zhang & Liewu Li & Yanyan Li & Haomin Xu & Xiaoxiao Li & Xiaolu Yu & Zisheng Zhang & Yongye Liang & Hailiang Wang, 2017. "Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    3. R. S. Lee & H. J. Kim & J. E. Fischer & A. Thess & R. E. Smalley, 1997. "Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br," Nature, Nature, vol. 388(6639), pages 255-257, July.
    4. Dawid Janas, 2020. "From Bio to Nano: A Review of Sustainable Methods of Synthesis of Carbon Nanotubes," Sustainability, MDPI, vol. 12(10), pages 1-16, May.
    5. J. N. Wang & X. G. Luo & T. Wu & Y. Chen, 2014. "High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subrato Acharjya & Jiacheng Chen & Minghui Zhu & Chong Peng, 2021. "Elucidating the reactivity and nature of active sites for tin phthalocyanine during CO2 reduction," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1191-1197, December.
    2. Haozhou Yang & Na Guo & Shibo Xi & Yao Wu & Bingqing Yao & Qian He & Chun Zhang & Lei Wang, 2024. "Potential-driven structural distortion in cobalt phthalocyanine for electrocatalytic CO2/CO reduction towards methanol," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Hong Wang & Xu Sun & Yizhuo Wang & Kuncai Li & Jing Wang & Xu Dai & Bin Chen & Daotong Chong & Liuyang Zhang & Junjie Yan, 2023. "Acid enhanced zipping effect to densify MWCNT packing for multifunctional MWCNT films with ultra-high electrical conductivity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Sandeep Kumar Maurya & Hazel Rose Galvan & Gaurav Gautam & Xiaojie Xu, 2022. "Recent Progress in Transparent Conductive Materials for Photovoltaics," Energies, MDPI, vol. 15(22), pages 1-25, November.
    5. Pang-Leen Ong & Igor A. Levitsky, 2010. "Organic / IV, III-V Semiconductor Hybrid Solar Cells," Energies, MDPI, vol. 3(3), pages 1-22, March.
    6. Ying Wang & Vinod K. Paidi & Weizhen Wang & Yong Wang & Guangri Jia & Tingyu Yan & Xiaoqiang Cui & Songhua Cai & Jingxiang Zhao & Kug-Seung Lee & Lawrence Yoon Suk Lee & Kwok-Yin Wong, 2024. "Spatial engineering of single-atom Fe adjacent to Cu-assisted nanozymes for biomimetic O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Yuan-Meng Liu & Xiao-Lei Shi & Ting Wu & Hao Wu & Yuanqing Mao & Tianyi Cao & De-Zhuang Wang & Wei-Di Liu & Meng Li & Qingfeng Liu & Zhi-Gang Chen, 2024. "Boosting thermoelectric performance of single-walled carbon nanotubes-based films through rational triple treatments," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Ji Wei Sun & Xuefeng Wu & Peng Fei Liu & Jiacheng Chen & Yuanwei Liu & Zhen Xin Lou & Jia Yue Zhao & Hai Yang Yuan & Aiping Chen & Xue Lu Wang & Minghui Zhu & Sheng Dai & Hua Gui Yang, 2023. "Scalable synthesis of coordinatively unsaturated metal-nitrogen sites for large-scale CO2 electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Huihui Zhang & Chang Xu & Xiaowen Zhan & Yu Yu & Kaifu Zhang & Qiquan Luo & Shan Gao & Jinlong Yang & Yi Xie, 2022. "Mechanistic insights into CO2 conversion chemistry of copper bis-(terpyridine) molecular electrocatalyst using accessible operando spectrochemistry," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Hong Wang & Kuncai Li & Xin Hao & Jiahao Pan & Tiantian Zhuang & Xu Dai & Jing Wang & Bin Chen & Daotong Chong, 2024. "Capillary compression induced outstanding n-type thermoelectric power factor in CNT films towards intelligent temperature controller," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Shohei Horike & Qingshuo Wei & Kouki Akaike & Kazuhiro Kirihara & Masakazu Mukaida & Yasuko Koshiba & Kenji Ishida, 2022. "Bicyclic-ring base doping induces n-type conduction in carbon nanotubes with outstanding thermal stability in air," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Soukane, Sofiane & Son, Hyuk Soo & Mustakeem, Mustakeem & Obaid, M. & Alpatova, Alla & Qamar, Adnan & Jin, Yong & Ghaffour, Noreddine, 2022. "Materials for energy conversion in membrane distillation localized heating: Review, analysis and future perspectives of a paradigm shift," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Jie-Wei Chen & Zisheng Zhang & Hui-Min Yan & Guang-Jie Xia & Hao Cao & Yang-Gang Wang, 2022. "Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Md Sumon Reza & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Md Naimul Haque & Shafi Noor Islam & Md Aslam Hossain & Mahbub Hassan & Hridoy Roy & Md Shahinoor Islam, 2023. "Advanced Applications of Carbonaceous Materials in Sustainable Water Treatment, Energy Storage, and CO 2 Capture: A Comprehensive Review," Sustainability, MDPI, vol. 15(11), pages 1-56, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1890-:d:526206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.