IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47417-y.html
   My bibliography  Save this article

Boosting thermoelectric performance of single-walled carbon nanotubes-based films through rational triple treatments

Author

Listed:
  • Yuan-Meng Liu

    (Nanjing Tech University)

  • Xiao-Lei Shi

    (Queensland University of Technology)

  • Ting Wu

    (Nanjing Tech University)

  • Hao Wu

    (Nanjing Tech University)

  • Yuanqing Mao

    (Queensland University of Technology
    The University of Queensland
    Southern University of Science and Technology)

  • Tianyi Cao

    (Queensland University of Technology)

  • De-Zhuang Wang

    (Nanjing Tech University)

  • Wei-Di Liu

    (Queensland University of Technology)

  • Meng Li

    (Queensland University of Technology)

  • Qingfeng Liu

    (Nanjing Tech University)

  • Zhi-Gang Chen

    (Queensland University of Technology)

Abstract

Single-walled carbon nanotubes (SWCNTs)-based thermoelectric materials, valued for their flexibility, lightweight, and cost-effectiveness, show promise for wearable thermoelectric devices. However, their thermoelectric performance requires significant enhancement for practical applications. To achieve this goal, in this work, we introduce rational “triple treatments” to improve the overall performance of flexible SWCNT-based films, achieving a high power factor of 20.29 µW cm−1 K−2 at room temperature. Ultrasonic dispersion enhances the conductivity, NaBH4 treatment reduces defects and enhances the Seebeck coefficient, and cold pressing significantly densifies the SWCNT films while preserving the high Seebeck coefficient. Also, bending tests confirm structural stability and exceptional flexibility, and a six-legged flexible device demonstrates a maximum power density of 2996 μW cm−2 at a 40 K temperature difference, showing great application potential. This advancement positions SWCNT films as promising flexible thermoelectric materials, providing insights into high-performance carbon-based thermoelectrics.

Suggested Citation

  • Yuan-Meng Liu & Xiao-Lei Shi & Ting Wu & Hao Wu & Yuanqing Mao & Tianyi Cao & De-Zhuang Wang & Wei-Di Liu & Meng Li & Qingfeng Liu & Zhi-Gang Chen, 2024. "Boosting thermoelectric performance of single-walled carbon nanotubes-based films through rational triple treatments," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47417-y
    DOI: 10.1038/s41467-024-47417-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47417-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47417-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nguyen T. Hung & Ahmad R. T. Nugraha & Riichiro Saito, 2019. "Thermoelectric Properties of Carbon Nanotubes," Energies, MDPI, vol. 12(23), pages 1-27, November.
    2. Shohei Horike & Qingshuo Wei & Kouki Akaike & Kazuhiro Kirihara & Masakazu Mukaida & Yasuko Koshiba & Kenji Ishida, 2022. "Bicyclic-ring base doping induces n-type conduction in carbon nanotubes with outstanding thermal stability in air," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Azure D. Avery & Ben H. Zhou & Jounghee Lee & Eui-Sup Lee & Elisa M. Miller & Rachelle Ihly & Devin Wesenberg & Kevin S. Mistry & Sarah L. Guillot & Barry L. Zink & Yong-Hyun Kim & Jeffrey L. Blackbur, 2016. "Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties," Nature Energy, Nature, vol. 1(4), pages 1-9, April.
    4. J. N. Wang & X. G. Luo & T. Wu & Y. Chen, 2014. "High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    5. Liu, Wei-Di & Yu, Yao & Dargusch, Matthew & Liu, Qingfeng & Chen, Zhi-Gang, 2021. "Carbon allotrope hybrids advance thermoelectric development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Wang & Kuncai Li & Xin Hao & Jiahao Pan & Tiantian Zhuang & Xu Dai & Jing Wang & Bin Chen & Daotong Chong, 2024. "Capillary compression induced outstanding n-type thermoelectric power factor in CNT films towards intelligent temperature controller," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Nguyen T. Hung & Ahmad R. T. Nugraha & Riichiro Saito, 2019. "Thermoelectric Properties of Carbon Nanotubes," Energies, MDPI, vol. 12(23), pages 1-27, November.
    4. Jaeyoo Choi & Edmond W Zaia & Madeleine Gordon & Jeffrey J Urban, 2018. "Weaving a New World: Wearable Thermoelectric Textiles," Current Trends in Fashion Technology & Textile Engineering, Juniper Publishers Inc., vol. 2(2), pages 23-25, January.
    5. Monika Rdest & Dawid Janas, 2021. "Carbon Nanotube Films for Energy Applications," Energies, MDPI, vol. 14(7), pages 1-27, March.
    6. Tian, Yu & Ren, Guang-Kun & Wei, Zhijie & Zheng, Zhe & Deng, Shunjie & Ma, Li & Li, Yuansen & Zhou, Zhifang & Chen, Xiaohong & Shi, Yan & Lin, Yuan-Hua, 2024. "Advances of thermoelectric power generation for room temperature: Applications, devices, materials and beyond," Renewable Energy, Elsevier, vol. 226(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47417-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.