IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4407-d840856.html
   My bibliography  Save this article

A Non-Invasive Method Based on AI and Current Measurements for the Detection of Faults in Three-Phase Motors

Author

Listed:
  • Federico Gargiulo

    (Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Universitá di Napoli Federico II, 80125 Naples, Italy
    These authors contributed equally to this work.)

  • Annalisa Liccardo

    (Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Universitá di Napoli Federico II, 80125 Naples, Italy
    These authors contributed equally to this work.)

  • Rosario Schiano Lo Moriello

    (Dipartimento di Ingegneria Industriale, Universitá di Napoli Federico II, 80125 Naples, Italy
    These authors contributed equally to this work.)

Abstract

Three-phase motors are commonly adopted in several industrial contexts and their failures can result in costly downtime causing undesired service outages; therefore, motor diagnostics is an issue that assumes great importance. To prevent their failures and face the considered service outages in a timely manner, a non-invasive method to identify electrical and mechanical faults in three-phase asynchronous electric motors is proposed in the paper. In particular, a measurement strategy along with a machine learning algorithm based on an artificial neural network is exploited to properly classify failures. In particular, digitized current samples of each motor phase are first processed by means of FFT and PSD in order to estimate the associated spectrum. Suitable features (in terms of frequency and amplitude of the spectral components) are then singled out to either train or feed a neural network acting as a classifier. The method is preliminarily validated on a set of 28 electric motors, and its performance is compared with common state-of-the-art machine learning techniques. The obtained results show that the proposed methodology is able to reach accuracy levels greater than 98% in identifying anomalous conditions of three-phase asynchronous motors.

Suggested Citation

  • Federico Gargiulo & Annalisa Liccardo & Rosario Schiano Lo Moriello, 2022. "A Non-Invasive Method Based on AI and Current Measurements for the Detection of Faults in Three-Phase Motors," Energies, MDPI, vol. 15(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4407-:d:840856
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4407/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4407/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Petr Kacor & Petr Bernat & Petr Moldrik, 2021. "Utilization of Two Sensors in Offline Diagnosis of Squirrel-Cage Rotors of Asynchronous Motors," Energies, MDPI, vol. 14(20), pages 1-23, October.
    2. Olga Popova & Boris Popov & Vladimir Karandey & Alexander Gerashchenko, 2019. "Entropy and Algorithm of Obtaining Decision Trees in a Way Approximated to the Natural Intelligence," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 13(3), pages 50-66, July.
    3. Ana L. Martinez-Herrera & Edna R. Ferrucho-Alvarez & Luis M. Ledesma-Carrillo & Ruth I. Mata-Chavez & Misael Lopez-Ramirez & Eduardo Cabal-Yepez, 2022. "Multiple Fault Detection in Induction Motors through Homogeneity and Kurtosis Computation," Energies, MDPI, vol. 15(4), pages 1-11, February.
    4. Maciej Skowron & Teresa Orlowska-Kowalska & Marcin Wolkiewicz & Czeslaw T. Kowalski, 2020. "Convolutional Neural Network-Based Stator Current Data-Driven Incipient Stator Fault Diagnosis of Inverter-Fed Induction Motor," Energies, MDPI, vol. 13(6), pages 1-21, March.
    5. Leopoldo Angrisani & Francesco Bonavolontà & Annalisa Liccardo & Rosario Schiano Lo Moriello & Francesco Serino, 2018. "Smart Power Meters in Augmented Reality Environment for Electricity Consumption Awareness," Energies, MDPI, vol. 11(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josue A. Reyes-Malanche & Francisco J. Villalobos-Pina & Efraın Ramırez-Velasco & Eduardo Cabal-Yepez & Geovanni Hernandez-Gomez & Misael Lopez-Ramirez, 2023. "Short-Circuit Fault Diagnosis on Induction Motors through Electric Current Phasor Analysis and Fuzzy Logic," Energies, MDPI, vol. 16(1), pages 1-15, January.
    2. Miguel Louro & Luís Ferreira, 2022. "Estimation of Underground MV Network Failure Types by Applying Machine Learning Methods to Indirect Observations," Energies, MDPI, vol. 15(17), pages 1-15, August.
    3. Przemyslaw Pietrzak & Piotr Pietrzak & Marcin Wolkiewicz, 2024. "Microcontroller-Based Embedded System for the Diagnosis of Stator Winding Faults and Unbalanced Supply Voltage of the Induction Motors," Energies, MDPI, vol. 17(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josue A. Reyes-Malanche & Francisco J. Villalobos-Pina & Efraın Ramırez-Velasco & Eduardo Cabal-Yepez & Geovanni Hernandez-Gomez & Misael Lopez-Ramirez, 2023. "Short-Circuit Fault Diagnosis on Induction Motors through Electric Current Phasor Analysis and Fuzzy Logic," Energies, MDPI, vol. 16(1), pages 1-15, January.
    2. Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    3. Przemyslaw Pietrzak & Marcin Wolkiewicz, 2021. "Comparison of Selected Methods for the Stator Winding Condition Monitoring of a PMSM Using the Stator Phase Currents," Energies, MDPI, vol. 14(6), pages 1-23, March.
    4. Ryszard Palka, 2022. "The Performance of Induction Machines," Energies, MDPI, vol. 15(9), pages 1-4, April.
    5. Moritz Benninger & Marcus Liebschner & Christian Kreischer, 2023. "Fault Detection of Induction Motors with Combined Modeling- and Machine-Learning-Based Framework," Energies, MDPI, vol. 16(8), pages 1-20, April.
    6. Maciej Skowron & Czeslaw T. Kowalski & Teresa Orlowska-Kowalska, 2022. "Impact of the Convolutional Neural Network Structure and Training Parameters on the Effectiveness of the Diagnostic Systems of Modern AC Motor Drives," Energies, MDPI, vol. 15(19), pages 1-22, September.
    7. Khaled Farag & Abdullah Shawier & Ayman S. Abdel-Khalik & Mohamed M. Ahmed & Shehab Ahmed, 2021. "Applicability Analysis of Indices-Based Fault Detection Technique of Six-Phase Induction Motor," Energies, MDPI, vol. 14(18), pages 1-23, September.
    8. Piotr Kołodziejek & Daniel Wachowiak, 2022. "Fast Real-Time RDFT- and GDFT-Based Direct Fault Diagnosis of Induction Motor Drive," Energies, MDPI, vol. 15(3), pages 1-14, February.
    9. Guy Clerc, 2022. "Failure Diagnosis and Prognosis of Induction Machines," Energies, MDPI, vol. 15(4), pages 1-2, February.
    10. Muhammad Zuhaib & Faraz Ahmed Shaikh & Wajiha Tanweer & Abdullah M. Alnajim & Saleh Alyahya & Sheroz Khan & Muhammad Usman & Muhammad Islam & Mohammad Kamrul Hasan, 2022. "Faults Feature Extraction Using Discrete Wavelet Transform and Artificial Neural Network for Induction Motor Availability Monitoring—Internet of Things Enabled Environment," Energies, MDPI, vol. 15(21), pages 1-32, October.
    11. Muhammed Ali Gultekin & Ali Bazzi, 2023. "Review of Fault Detection and Diagnosis Techniques for AC Motor Drives," Energies, MDPI, vol. 16(15), pages 1-22, July.
    12. Kamila Jankowska & Mateusz Dybkowski, 2021. "A Current Sensor Fault Tolerant Control Strategy for PMSM Drive Systems Based on C ri Markers," Energies, MDPI, vol. 14(12), pages 1-18, June.
    13. Waseem El Sayed & Mostafa Abd El Geliel & Ahmed Lotfy, 2020. "Fault Diagnosis of PMSG Stator Inter-Turn Fault Using Extended Kalman Filter and Unscented Kalman Filter," Energies, MDPI, vol. 13(11), pages 1-24, June.
    14. Jianqiang Liu & Hu Tan & Yunming Shi & Yu Ai & Shaoyong Chen & Chenyang Zhang, 2022. "Research on Diagnosis and Prediction Method of Stator Interturn Short-Circuit Fault of Traction Motor," Energies, MDPI, vol. 15(10), pages 1-17, May.
    15. Marco Antonio Rodriguez-Blanco & Victor Golikov & René Osorio-Sánchez & Oleg Samovarov & Gerardo Ortiz-Torres & Rafael Sanchez-Lara & Jose Luis Vazquez-Avila, 2022. "Fault Diagnosis of Induction Motor Using D-Q Simplified Model and Parity Equations," Energies, MDPI, vol. 15(22), pages 1-19, November.
    16. Attallah, Omneya & Ibrahim, Rania A. & Zakzouk, Nahla E., 2023. "CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection," Renewable Energy, Elsevier, vol. 203(C), pages 870-880.
    17. Khaled A. Mahafzah & Mohammad A. Obeidat & Ayman M. Mansour & Ali Q. Al-Shetwi & Taha Selim Ustun, 2022. "Artificial-Intelligence-Based Open-Circuit Fault Diagnosis in VSI-Fed PMSMs and a Novel Fault Recovery Method," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    18. Konrad Górny & Piotr Kuwałek & Wojciech Pietrowski, 2021. "Increasing Electric Vehicles Reliability by Non-Invasive Diagnosis of Motor Winding Faults," Energies, MDPI, vol. 14(9), pages 1-14, April.
    19. Luis Alonso Trujillo Guajardo & Miguel Angel Platas Garza & Johnny Rodríguez Maldonado & Mario Alberto González Vázquez & Luis Humberto Rodríguez Alfaro & Fernando Salinas Salinas, 2022. "Prony Method Estimation for Motor Current Signal Analysis Diagnostics in Rotor Cage Induction Motors," Energies, MDPI, vol. 15(10), pages 1-24, May.
    20. Leocadio Hontoria & Catalina Rus-Casas & Juan Domingo Aguilar & Jesús C. Hernandez, 2019. "An Improved Method for Obtaining Solar Irradiation Data at Temporal High-Resolution," Sustainability, MDPI, vol. 11(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4407-:d:840856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.