IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7008-d923844.html
   My bibliography  Save this article

Impact of the Convolutional Neural Network Structure and Training Parameters on the Effectiveness of the Diagnostic Systems of Modern AC Motor Drives

Author

Listed:
  • Maciej Skowron

    (Department of Electrical Machines and Drives, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland)

  • Czeslaw T. Kowalski

    (Department of Electrical Machines and Drives, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland)

  • Teresa Orlowska-Kowalska

    (Department of Electrical Machines and Drives, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland)

Abstract

Currently, AC motors are a key element of industrial and commercial drive systems. During normal operation, the machines may become damaged, which may pose a threat to the users. Therefore, it is important to develop a fault detection method that allows for the detection of a fault at an early stage. Among the currently used diagnostic systems, applications based on deep neural structures are dynamically developed. Despite many examples of applications of deep learning methods, there are no formal rules for selecting the network structure and parameters of the training process. Such methods would make it possible to shorten the implementation process of deep networks in diagnostic systems of AC machines. The article presents a detailed analysis of the influence of deep convolutional network hyperparameters and training procedures on the precision of the interturn short-circuits detection system. The studies take into account the direct analysis of phase currents through the convolutional network for induction motors and permanent magnet synchronous motors. The research results presented in the article are an extension of the authors’ previous research.

Suggested Citation

  • Maciej Skowron & Czeslaw T. Kowalski & Teresa Orlowska-Kowalska, 2022. "Impact of the Convolutional Neural Network Structure and Training Parameters on the Effectiveness of the Diagnostic Systems of Modern AC Motor Drives," Energies, MDPI, vol. 15(19), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7008-:d:923844
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7008/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7008/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maciej Skowron & Teresa Orlowska-Kowalska & Marcin Wolkiewicz & Czeslaw T. Kowalski, 2020. "Convolutional Neural Network-Based Stator Current Data-Driven Incipient Stator Fault Diagnosis of Inverter-Fed Induction Motor," Energies, MDPI, vol. 13(6), pages 1-21, March.
    2. Lucia Frosini, 2020. "Novel Diagnostic Techniques for Rotating Electrical Machines—A Review," Energies, MDPI, vol. 13(19), pages 1-26, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josue A. Reyes-Malanche & Francisco J. Villalobos-Pina & Efraın Ramırez-Velasco & Eduardo Cabal-Yepez & Geovanni Hernandez-Gomez & Misael Lopez-Ramirez, 2023. "Short-Circuit Fault Diagnosis on Induction Motors through Electric Current Phasor Analysis and Fuzzy Logic," Energies, MDPI, vol. 16(1), pages 1-15, January.
    2. Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    3. Przemyslaw Pietrzak & Marcin Wolkiewicz, 2021. "Comparison of Selected Methods for the Stator Winding Condition Monitoring of a PMSM Using the Stator Phase Currents," Energies, MDPI, vol. 14(6), pages 1-23, March.
    4. Muhammad Amir Khan & Bilal Asad & Karolina Kudelina & Toomas Vaimann & Ants Kallaste, 2022. "The Bearing Faults Detection Methods for Electrical Machines—The State of the Art," Energies, MDPI, vol. 16(1), pages 1-54, December.
    5. Khaled Farag & Abdullah Shawier & Ayman S. Abdel-Khalik & Mohamed M. Ahmed & Shehab Ahmed, 2021. "Applicability Analysis of Indices-Based Fault Detection Technique of Six-Phase Induction Motor," Energies, MDPI, vol. 14(18), pages 1-23, September.
    6. Federico Gargiulo & Annalisa Liccardo & Rosario Schiano Lo Moriello, 2022. "A Non-Invasive Method Based on AI and Current Measurements for the Detection of Faults in Three-Phase Motors," Energies, MDPI, vol. 15(12), pages 1-19, June.
    7. Piotr Kołodziejek & Daniel Wachowiak, 2022. "Fast Real-Time RDFT- and GDFT-Based Direct Fault Diagnosis of Induction Motor Drive," Energies, MDPI, vol. 15(3), pages 1-14, February.
    8. Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
    9. Tomas Garcia-Calva & Daniel Morinigo-Sotelo & Vanessa Fernandez-Cavero & Rene Romero-Troncoso, 2022. "Early Detection of Faults in Induction Motors—A Review," Energies, MDPI, vol. 15(21), pages 1-18, October.
    10. Muhammed Ali Gultekin & Ali Bazzi, 2023. "Review of Fault Detection and Diagnosis Techniques for AC Motor Drives," Energies, MDPI, vol. 16(15), pages 1-22, July.
    11. Kamila Jankowska & Mateusz Dybkowski, 2021. "A Current Sensor Fault Tolerant Control Strategy for PMSM Drive Systems Based on C ri Markers," Energies, MDPI, vol. 14(12), pages 1-18, June.
    12. Waseem El Sayed & Mostafa Abd El Geliel & Ahmed Lotfy, 2020. "Fault Diagnosis of PMSG Stator Inter-Turn Fault Using Extended Kalman Filter and Unscented Kalman Filter," Energies, MDPI, vol. 13(11), pages 1-24, June.
    13. Xiaohua Song & Jing Liu & Chaobo Chen & Song Gao, 2022. "Advanced Methods in Rotating Machines," Energies, MDPI, vol. 15(15), pages 1-3, July.
    14. Jianqiang Liu & Hu Tan & Yunming Shi & Yu Ai & Shaoyong Chen & Chenyang Zhang, 2022. "Research on Diagnosis and Prediction Method of Stator Interturn Short-Circuit Fault of Traction Motor," Energies, MDPI, vol. 15(10), pages 1-17, May.
    15. Marco Antonio Rodriguez-Blanco & Victor Golikov & René Osorio-Sánchez & Oleg Samovarov & Gerardo Ortiz-Torres & Rafael Sanchez-Lara & Jose Luis Vazquez-Avila, 2022. "Fault Diagnosis of Induction Motor Using D-Q Simplified Model and Parity Equations," Energies, MDPI, vol. 15(22), pages 1-19, November.
    16. Artem Ermolaev & Vladimir Erofeev & Aleksandr Plekhov & Dmitry Titov, 2022. "Magnetic Vibration in Induction Motor Caused by Supply Voltage Distortion," Energies, MDPI, vol. 15(24), pages 1-11, December.
    17. Attallah, Omneya & Ibrahim, Rania A. & Zakzouk, Nahla E., 2023. "CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection," Renewable Energy, Elsevier, vol. 203(C), pages 870-880.
    18. Khaled A. Mahafzah & Mohammad A. Obeidat & Ayman M. Mansour & Ali Q. Al-Shetwi & Taha Selim Ustun, 2022. "Artificial-Intelligence-Based Open-Circuit Fault Diagnosis in VSI-Fed PMSMs and a Novel Fault Recovery Method," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    19. Konrad Górny & Piotr Kuwałek & Wojciech Pietrowski, 2021. "Increasing Electric Vehicles Reliability by Non-Invasive Diagnosis of Motor Winding Faults," Energies, MDPI, vol. 14(9), pages 1-14, April.
    20. Mateusz Krzysztofiak & Maciej Skowron & Teresa Orlowska-Kowalska, 2020. "Analysis of the Impact of Stator Inter-Turn Short Circuits on PMSM Drive with Scalar and Vector Control," Energies, MDPI, vol. 14(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7008-:d:923844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.