IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2510-d544718.html
   My bibliography  Save this article

Increasing Electric Vehicles Reliability by Non-Invasive Diagnosis of Motor Winding Faults

Author

Listed:
  • Konrad Górny

    (Institute of Electrical Engineering and Electronics, Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, Piotrowo Street, No. 3a, 60-965 Poznan, Poland)

  • Piotr Kuwałek

    (Institute of Electrical Engineering and Electronics, Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, Piotrowo Street, No. 3a, 60-965 Poznan, Poland)

  • Wojciech Pietrowski

    (Institute of Electrical Engineering and Electronics, Faculty of Control, Robotics and Electrical Engineering, Poznan University of Technology, Piotrowo Street, No. 3a, 60-965 Poznan, Poland)

Abstract

The article proposes a proprietary approach to the diagnosis of induction motors allowing increasing the reliability of electric vehicles. This approach makes it possible to detect damage in the form of an inter-turn short-circuit at an early stage of its occurrence. The authors of the article describe an effective diagnostic method using the extraction of diagnostic signal features using an Enhanced Empirical Wavelet Transform and an algorithm based on the method of Ensemble Bagged Trees. The article describes in detail the methodology of the carried out research, presents the method of extracting features from the diagnostic signal and describes the conclusions resulting from the research. Phase current waveforms obtained from a real object as well as simulation results based on the field-circuit model of an induction motor were used as a diagnostic signal in the research. In order to determine the accuracy of the damage classification, simple metrics such as accuracy, sensitivity, selectivity, precision as well as complex metrics weight F1 and macro F1 were used.

Suggested Citation

  • Konrad Górny & Piotr Kuwałek & Wojciech Pietrowski, 2021. "Increasing Electric Vehicles Reliability by Non-Invasive Diagnosis of Motor Winding Faults," Energies, MDPI, vol. 14(9), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2510-:d:544718
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2510/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2510/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hisahide Nakamura & Yukio Mizuno, 2020. "Method for Diagnosing a Short-Circuit Fault in the Stator Winding of a Motor Based on Parameter Identification of Features and a Support Vector Machine," Energies, MDPI, vol. 13(9), pages 1-15, May.
    2. Maciej Skowron & Teresa Orlowska-Kowalska & Marcin Wolkiewicz & Czeslaw T. Kowalski, 2020. "Convolutional Neural Network-Based Stator Current Data-Driven Incipient Stator Fault Diagnosis of Inverter-Fed Induction Motor," Energies, MDPI, vol. 13(6), pages 1-21, March.
    3. Maciej Skowron & Marcin Wolkiewicz & Teresa Orlowska-Kowalska & Czeslaw T. Kowalski, 2019. "Effectiveness of Selected Neural Network Structures Based on Axial Flux Analysis in Stator and Rotor Winding Incipient Fault Detection of Inverter-fed Induction Motors," Energies, MDPI, vol. 12(12), pages 1-20, June.
    4. Wojciech Pietrowski & Konrad Górny, 2020. "Analysis of Torque Ripples of an Induction Motor Taking into Account a Inter-Turn Short-Circuit in a Stator Winding," Energies, MDPI, vol. 13(14), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josue A. Reyes-Malanche & Francisco J. Villalobos-Pina & Efraın Ramırez-Velasco & Eduardo Cabal-Yepez & Geovanni Hernandez-Gomez & Misael Lopez-Ramirez, 2023. "Short-Circuit Fault Diagnosis on Induction Motors through Electric Current Phasor Analysis and Fuzzy Logic," Energies, MDPI, vol. 16(1), pages 1-15, January.
    2. Paweł Idziak & Krzysztof Kowalski, 2021. "Analysis of Selected Operating States of the Line Start Synchronous Reluctance Motor Using the Finite Element Method," Energies, MDPI, vol. 14(20), pages 1-18, October.
    3. Lien-Kai Chang & Shun-Hong Wang & Mi-Ching Tsai, 2020. "Demagnetization Fault Diagnosis of a PMSM Using Auto-Encoder and K-Means Clustering," Energies, MDPI, vol. 13(17), pages 1-12, August.
    4. Kai Ding & Chen Yao & Yifan Li & Qinglong Hao & Yaqiong Lv & Zengrui Huang, 2022. "A Review on Fault Diagnosis Technology of Key Components in Cold Ironing System," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    5. Przemyslaw Pietrzak & Marcin Wolkiewicz, 2021. "Comparison of Selected Methods for the Stator Winding Condition Monitoring of a PMSM Using the Stator Phase Currents," Energies, MDPI, vol. 14(6), pages 1-23, March.
    6. Maciej Skowron & Czeslaw T. Kowalski & Teresa Orlowska-Kowalska, 2022. "Impact of the Convolutional Neural Network Structure and Training Parameters on the Effectiveness of the Diagnostic Systems of Modern AC Motor Drives," Energies, MDPI, vol. 15(19), pages 1-22, September.
    7. Khaled Farag & Abdullah Shawier & Ayman S. Abdel-Khalik & Mohamed M. Ahmed & Shehab Ahmed, 2021. "Applicability Analysis of Indices-Based Fault Detection Technique of Six-Phase Induction Motor," Energies, MDPI, vol. 14(18), pages 1-23, September.
    8. Federico Gargiulo & Annalisa Liccardo & Rosario Schiano Lo Moriello, 2022. "A Non-Invasive Method Based on AI and Current Measurements for the Detection of Faults in Three-Phase Motors," Energies, MDPI, vol. 15(12), pages 1-19, June.
    9. Piotr Kołodziejek & Daniel Wachowiak, 2022. "Fast Real-Time RDFT- and GDFT-Based Direct Fault Diagnosis of Induction Motor Drive," Energies, MDPI, vol. 15(3), pages 1-14, February.
    10. Yury Kuznetsov & Igor Kravchenko & Dmitry Gerashchenkov & Mikhail Markov & Vadim Davydov & Anna Mozhayko & Valentin Dudkin & Alina Bykova, 2022. "The Use of Cold Spraying and Micro-Arc Oxidation Techniques for the Repairing and Wear Resistance Improvement of Motor Electric Bearing Shields," Energies, MDPI, vol. 15(3), pages 1-12, January.
    11. Jordi Burriel-Valencia & Ruben Puche-Panadero & Javier Martinez-Roman & Angel Sapena-Baño & Martin Riera-Guasp & Manuel Pineda-Sánchez, 2019. "Multi-Band Frequency Window for Time-Frequency Fault Diagnosis of Induction Machines," Energies, MDPI, vol. 12(17), pages 1-18, August.
    12. Muhammed Ali Gultekin & Ali Bazzi, 2023. "Review of Fault Detection and Diagnosis Techniques for AC Motor Drives," Energies, MDPI, vol. 16(15), pages 1-22, July.
    13. Kamila Jankowska & Mateusz Dybkowski, 2021. "A Current Sensor Fault Tolerant Control Strategy for PMSM Drive Systems Based on C ri Markers," Energies, MDPI, vol. 14(12), pages 1-18, June.
    14. Waseem El Sayed & Mostafa Abd El Geliel & Ahmed Lotfy, 2020. "Fault Diagnosis of PMSG Stator Inter-Turn Fault Using Extended Kalman Filter and Unscented Kalman Filter," Energies, MDPI, vol. 13(11), pages 1-24, June.
    15. Maciej Skowron & Teresa Orlowska-Kowalska & Marcin Wolkiewicz & Czeslaw T. Kowalski, 2020. "Convolutional Neural Network-Based Stator Current Data-Driven Incipient Stator Fault Diagnosis of Inverter-Fed Induction Motor," Energies, MDPI, vol. 13(6), pages 1-21, March.
    16. Jianqiang Liu & Hu Tan & Yunming Shi & Yu Ai & Shaoyong Chen & Chenyang Zhang, 2022. "Research on Diagnosis and Prediction Method of Stator Interturn Short-Circuit Fault of Traction Motor," Energies, MDPI, vol. 15(10), pages 1-17, May.
    17. Marco Antonio Rodriguez-Blanco & Victor Golikov & René Osorio-Sánchez & Oleg Samovarov & Gerardo Ortiz-Torres & Rafael Sanchez-Lara & Jose Luis Vazquez-Avila, 2022. "Fault Diagnosis of Induction Motor Using D-Q Simplified Model and Parity Equations," Energies, MDPI, vol. 15(22), pages 1-19, November.
    18. Remus Pusca & Raphael Romary & Ezzeddine Touti & Petru Livinti & Ilie Nuca & Adrian Ceban, 2021. "Procedure for Detection of Stator Inter-Turn Short Circuit in AC Machines Measuring the External Magnetic Field," Energies, MDPI, vol. 14(4), pages 1-22, February.
    19. Miguel Louro & Luís Ferreira, 2021. "Underground MV Network Failures’ Waveform Characteristics—An Investigation," Energies, MDPI, vol. 14(5), pages 1-14, February.
    20. Attallah, Omneya & Ibrahim, Rania A. & Zakzouk, Nahla E., 2023. "CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection," Renewable Energy, Elsevier, vol. 203(C), pages 870-880.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2510-:d:544718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.