IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1555-d515101.html
   My bibliography  Save this article

Research on the Fault Feature Extraction of Rolling Bearings Based on SGMD-CS and the AdaBoost Framework

Author

Listed:
  • Hui Li

    (School of Electrical Engineering, Xi’an University of Technology, Xi’an 710054, China)

  • Fan Li

    (School of Electrical Engineering, Xi’an University of Technology, Xi’an 710054, China)

  • Rong Jia

    (School of Electrical Engineering, Xi’an University of Technology, Xi’an 710054, China)

  • Fang Zhai

    (School of Humanities and Foreign Languages, Xi’an University of Technology, Xi’an 710054, China)

  • Liang Bai

    (Institute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710054, China)

  • Xingqi Luo

    (Institute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710054, China)

Abstract

Symplectic geometric mode decomposition (SGMD) is a newly proposed signal processing method. Because of its superiority, it has gained more and more attention in the field of fault diagnosis. However, the similar component reorganization problem involved in this method has not been clearly stated. Aiming at this problem, this paper proposes the SGMD-CS method based on the SGMD method and the cosine similarity (CS) and has been compared and verified on the simulation signal and the actual rolling bearing signal. In addition, in order to realize the intelligent diagnosis of the wind turbine bearing fault, the symplectic geometric entropy (SymEn) is extracted as the fault feature and input it into the AdaBoost classification model. In summary, this paper proposes a new wind turbine fault feature extraction method based on the SGMD-CS and AdaBoost framework, and the validity of the method is verified by the rolling bearing vibration data of the Electrical Engineering Laboratory of Case Western Reserve University.

Suggested Citation

  • Hui Li & Fan Li & Rong Jia & Fang Zhai & Liang Bai & Xingqi Luo, 2021. "Research on the Fault Feature Extraction of Rolling Bearings Based on SGMD-CS and the AdaBoost Framework," Energies, MDPI, vol. 14(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1555-:d:515101
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1555/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1555/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhijian Wang & Junyuan Wang & Wenan Cai & Jie Zhou & Wenhua Du & Jingtai Wang & Gaofeng He & Huihui He, 2019. "Application of an Improved Ensemble Local Mean Decomposition Method for Gearbox Composite Fault Diagnosis," Complexity, Hindawi, vol. 2019, pages 1-17, May.
    2. Bin Liu & Peng Zheng & Qilin Dai & Zhongli Zhou, 2018. "The Measurement and Elimination of Mode Splitting: From the Perspective of the Partly Ensemble Empirical Mode Decomposition," Complexity, Hindawi, vol. 2018, pages 1-10, November.
    3. Min Lei & Guang Meng, 2011. "Symplectic Principal Component Analysis: A New Method for Time Series Analysis," Mathematical Problems in Engineering, Hindawi, vol. 2011, pages 1-14, December.
    4. Hui Li & Bangji Fan & Rong Jia & Fang Zhai & Liang Bai & Xingqi Luo, 2020. "Research on Multi-Domain Fault Diagnosis of Gearbox of Wind Turbine Based on Adaptive Variational Mode Decomposition and Extreme Learning Machine Algorithms," Energies, MDPI, vol. 13(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Ding & Xuguang Zhao & Weigao Meng & Haichao Wang, 2022. "Smart Evaluation of Sustainability of Photovoltaic Projects in the Context of Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    2. Zhenen Li & Xinyan Zhang & Tusongjiang Kari & Wei Hu, 2021. "Health Assessment and Remaining Useful Life Prediction of Wind Turbine High-Speed Shaft Bearings," Energies, MDPI, vol. 14(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Acarer, Sercan & Uyulan, Çağlar & Karadeniz, Ziya Haktan, 2020. "Optimization of radial inflow wind turbines for urban wind energy harvesting," Energy, Elsevier, vol. 202(C).
    2. Zhijian Wang & Likang Zheng & Wenhua Du & Wenan Cai & Jie Zhou & Jingtai Wang & Xiaofeng Han & Gaofeng He, 2019. "A Novel Method for Intelligent Fault Diagnosis of Bearing Based on Capsule Neural Network," Complexity, Hindawi, vol. 2019, pages 1-17, June.
    3. Len Gelman & Krzysztof Soliński & Andrew Ball, 2021. "Novel Instantaneous Wavelet Bicoherence for Vibration Fault Detection in Gear Systems," Energies, MDPI, vol. 14(20), pages 1-18, October.
    4. Fangqin Zhang & Yan Kang & Xiao Cheng & Peiru Chen & Songbai Song, 2022. "A Hybrid Model Integrating Elman Neural Network with Variational Mode Decomposition and Box–Cox Transformation for Monthly Runoff Time Series Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3673-3697, August.
    5. Jersson X. Leon-Medina & Francesc Pozo, 2023. "Moving towards Preventive Maintenance in Wind Turbine Structural Control and Health Monitoring," Energies, MDPI, vol. 16(6), pages 1-4, March.
    6. Zhijian Wang & Likang Zheng & Junyuan Wang & Wenhua Du, 2019. "Research on Novel Bearing Fault Diagnosis Method Based on Improved Krill Herd Algorithm and Kernel Extreme Learning Machine," Complexity, Hindawi, vol. 2019, pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1555-:d:515101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.