IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1966-d233544.html
   My bibliography  Save this article

A Design of PWM Controlled Calibrator of Non-Sinusoidal Voltage Waveforms

Author

Listed:
  • Goran Petrovic

    (FESB, University of Split, R. Boskovica 32, HR-21000 Split, Croatia)

  • Juraj Alojzije Bosnic

    (FESB, University of Split, R. Boskovica 32, HR-21000 Split, Croatia)

  • Goran Majic

    (FESB, University of Split, R. Boskovica 32, HR-21000 Split, Croatia)

  • Marin Despalatovic

    (FESB, University of Split, R. Boskovica 32, HR-21000 Split, Croatia)

Abstract

Power quality conditions in electrical power networks have drastically changed in recent years. A number of electrical devices and power generators that are the main sources of disturbances is ever increasing. Thus, the need for calibrators of different electrical equipment that will be able to generate non-sinusoidal voltages and/or currents has proportionally increased. This paper presents a simple, unconventional approach of generating voltage harmonics, which do not rely on digital-to-analog (D/A) boards and power amplifier to amplify low-voltage signals. A fundamental part of the calibrator is the insulated gate bipolar transistor (IGBT) inverter with low-pass LRC filter at its output, which eliminates higher harmonics from the generated voltage. Desired voltage waveform is directly generated at the inverter’s output, thus the power amplifier is omitted from the setup. The modulation technique used for controlling IGBTs is the well-known sine pulse width modulation (PWM). Magnitudes and phase angles of the desired harmonics are regulated to compensate for the phenomena that may have a negative influence on their values: Nonlinearities of the system, temperature variation, voltage drops on parasitic components, etc. Experimental results show great potential of the proposed method for the design of the voltage calibrator for various electrical instruments.

Suggested Citation

  • Goran Petrovic & Juraj Alojzije Bosnic & Goran Majic & Marin Despalatovic, 2019. "A Design of PWM Controlled Calibrator of Non-Sinusoidal Voltage Waveforms," Energies, MDPI, vol. 12(10), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1966-:d:233544
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1966/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1966/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sharma, Konark & Mohan Saini, Lalit, 2015. "Performance analysis of smart metering for smart grid: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 720-735.
    2. Matthias Stifter & Jose Cordova & Jawad Kazmi & Reza Arghandeh, 2018. "Real-Time Simulation and Hardware-in-the-Loop Testbed for Distribution Synchrophasor Applications," Energies, MDPI, vol. 11(4), pages 1-21, April.
    3. Allan Manito & Ubiratan Bezerra & Maria Tostes & Edson Matos & Carminda Carvalho & Thiago Soares, 2018. "Evaluating Harmonic Distortions on Grid Voltages Due to Multiple Nonlinear Loads Using Artificial Neural Networks," Energies, MDPI, vol. 11(12), pages 1-13, November.
    4. Mario Klarić & Igor Kuzle & Ninoslav Holjevac, 2018. "Wind Power Monitoring and Control Based on Synchrophasor Measurement Data Mining," Energies, MDPI, vol. 11(12), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dariusz Brodecki & Ernest Stano & Mateusz Andrychowicz & Piotr Kaczmarek, 2021. "EMC of Wideband Power Sources," Energies, MDPI, vol. 14(5), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas I. Strasser & Sebastian Rohjans & Graeme M. Burt, 2019. "Methods and Concepts for Designing and Validating Smart Grid Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.
    2. Baloglu, Ulas Baran & Demir, Yakup, 2018. "Lightweight privacy-preserving data aggregation scheme for smart grid metering infrastructure protection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 16-24.
    3. Ponce, Pedro & Polasko, Kenneth & Molina, Arturo, 2016. "End user perceptions toward smart grid technology: Acceptance, adoption, risks, and trust," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 587-598.
    4. Shengyuan Liu & Fangbin Ye & Zhenzhi Lin & Jia Yang & Haigang Liu & Yinghe Lin & Haiwei Xie, 2019. "Comprehensive Quality Assessment Algorithm for Smart Meters," Energies, MDPI, vol. 12(19), pages 1-20, September.
    5. de Wildt, T.E. & Chappin, E.J.L. & van de Kaa, G. & Herder, P.M. & van de Poel, I.R., 2019. "Conflicting values in the smart electricity grid a comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 184-196.
    6. van de Kaa, G. & Fens, T. & Rezaei, J. & Kaynak, D. & Hatun, Z. & Tsilimeni-Archangelidi, A., 2019. "Realizing smart meter connectivity: Analyzing the competing technologies Power line communication, mobile telephony, and radio frequency using the best worst method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 320-327.
    7. Stavros Lazarou & Vasiliki Vita & Lambros Ekonomou, 2018. "Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-17, November.
    8. Pereira, Guillermo Ivan & Specht, Jan Martin & Silva, Patrícia Pereira & Madlener, Reinhard, 2018. "Technology, business model, and market design adaptation toward smart electricity distribution: Insights for policy making," Energy Policy, Elsevier, vol. 121(C), pages 426-440.
    9. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    10. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    11. Ellabban, Omar & Abu-Rub, Haitham, 2016. "Smart grid customers' acceptance and engagement: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1285-1298.
    12. Zoran Zbunjak & Igor Kuzle, 2019. "System Integrity Protection Scheme (SIPS) Development and an Optimal Bus-Splitting Scheme Supported by Phasor Measurement Units (PMUs)," Energies, MDPI, vol. 12(17), pages 1-21, September.
    13. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    14. Gaurav Yadav & Yuan Liao & Austin D. Burfield, 2023. "Hardware-in-the-Loop Testing for Protective Relays Using Real Time Digital Simulator (RTDS)," Energies, MDPI, vol. 16(3), pages 1-30, January.
    15. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    16. Pengfei Zhou & Mengyu Han & Yang Shen, 2023. "Impact of Intelligent Manufacturing on Total-Factor Energy Efficiency: Mechanism and Improvement Path," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    17. Masood, Bilal & Baig, Sobia, 2016. "Standardization and deployment scenario of next generation NB-PLC technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1033-1047.
    18. Kalair, A. & Abas, N. & Kalair, A.R. & Saleem, Z. & Khan, N., 2017. "Review of harmonic analysis, modeling and mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1152-1187.
    19. Luan, Wenpeng & Tian, Longfei & Zhao, Bochao, 2023. "Leveraging hybrid probabilistic multi-objective evolutionary algorithm for dynamic tariff design," Applied Energy, Elsevier, vol. 342(C).
    20. Stracqualursi, Erika & Rosato, Antonello & Di Lorenzo, Gianfranco & Panella, Massimo & Araneo, Rodolfo, 2023. "Systematic review of energy theft practices and autonomous detection through artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1966-:d:233544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.