IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224014993.html
   My bibliography  Save this article

Predicting daily heating energy consumption in residential buildings through integration of random forest model and meta-heuristic algorithms

Author

Listed:
  • Xu, Weiyan
  • Tu, Jielei
  • Xu, Ning
  • Liu, Zuming

Abstract

This research utilizes a sophisticated hybrid model integrating the Random Forest algorithm with meta-heuristic optimization techniques to estimate heating energy consumption in residential buildings. The study addresses key variables including architectural characteristics, occupancy, and ambient temperature. The primary objective is to enhance the prediction accuracy of heating energy consumption using a novel approach combining Random Forest with various meta-heuristic algorithms. The study employs six combinations of the Random Forest algorithm and meta-heuristic optimizers. To mitigate overfitting, K-Fold cross-validation is implemented during model training. The model's performance is evaluated using five statistical indices: coefficient of determination (R2), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Relative Absolute Error (RAE), and Theil Inequality Coefficient (TIC). Results demonstrate the hybrid model's high predictive accuracy, with the Arithmetic Optimization Algorithm enhancing Random Forest's performance significantly. Notable statistical achievements include R2 = 0.977201, RMSE = 0.1179, MAE = 0.0573, RAE = 0.0930, and TIC = 0.0187. Additionally, the Ant Lion Optimizer shows excellent convergence, achieving a TIC value of 0.014986 after 101 iterations. The proposed hybrid model significantly outperforms traditional methods in predicting residential heating energy consumption. The integration of Random Forest with advanced meta-heuristic algorithms offers a robust framework for enhancing prediction accuracy in energy consumption modeling.

Suggested Citation

  • Xu, Weiyan & Tu, Jielei & Xu, Ning & Liu, Zuming, 2024. "Predicting daily heating energy consumption in residential buildings through integration of random forest model and meta-heuristic algorithms," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014993
    DOI: 10.1016/j.energy.2024.131726
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131726?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.