IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224014993.html
   My bibliography  Save this article

Predicting daily heating energy consumption in residential buildings through integration of random forest model and meta-heuristic algorithms

Author

Listed:
  • Xu, Weiyan
  • Tu, Jielei
  • Xu, Ning
  • Liu, Zuming

Abstract

This research utilizes a sophisticated hybrid model integrating the Random Forest algorithm with meta-heuristic optimization techniques to estimate heating energy consumption in residential buildings. The study addresses key variables including architectural characteristics, occupancy, and ambient temperature. The primary objective is to enhance the prediction accuracy of heating energy consumption using a novel approach combining Random Forest with various meta-heuristic algorithms. The study employs six combinations of the Random Forest algorithm and meta-heuristic optimizers. To mitigate overfitting, K-Fold cross-validation is implemented during model training. The model's performance is evaluated using five statistical indices: coefficient of determination (R2), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Relative Absolute Error (RAE), and Theil Inequality Coefficient (TIC). Results demonstrate the hybrid model's high predictive accuracy, with the Arithmetic Optimization Algorithm enhancing Random Forest's performance significantly. Notable statistical achievements include R2 = 0.977201, RMSE = 0.1179, MAE = 0.0573, RAE = 0.0930, and TIC = 0.0187. Additionally, the Ant Lion Optimizer shows excellent convergence, achieving a TIC value of 0.014986 after 101 iterations. The proposed hybrid model significantly outperforms traditional methods in predicting residential heating energy consumption. The integration of Random Forest with advanced meta-heuristic algorithms offers a robust framework for enhancing prediction accuracy in energy consumption modeling.

Suggested Citation

  • Xu, Weiyan & Tu, Jielei & Xu, Ning & Liu, Zuming, 2024. "Predicting daily heating energy consumption in residential buildings through integration of random forest model and meta-heuristic algorithms," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014993
    DOI: 10.1016/j.energy.2024.131726
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131726?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Siyue & Yan, Da & Hu, Shan & Zhang, Yang, 2021. "Modelling building energy consumption in China under different future scenarios," Energy, Elsevier, vol. 214(C).
    2. Kapp, Sean & Choi, Jun-Ki & Hong, Taehoon, 2023. "Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    3. Fateme Dinmohammadi & Yuxuan Han & Mahmood Shafiee, 2023. "Predicting Energy Consumption in Residential Buildings Using Advanced Machine Learning Algorithms," Energies, MDPI, vol. 16(9), pages 1-23, April.
    4. Feng, Yanxiao & Duan, Qiuhua & Chen, Xi & Yakkali, Sai Santosh & Wang, Julian, 2021. "Space cooling energy usage prediction based on utility data for residential buildings using machine learning methods," Applied Energy, Elsevier, vol. 291(C).
    5. Xiaoyu Gao & Chengying Qi & Guixiang Xue & Jiancai Song & Yahui Zhang & Shi-ang Yu, 2020. "Forecasting the Heat Load of Residential Buildings with Heat Metering Based on CEEMDAN-SVR," Energies, MDPI, vol. 13(22), pages 1-19, November.
    6. Fonseca, Jimeno A. & Nevat, Ido & Peters, Gareth W., 2020. "Quantifying the uncertain effects of climate change on building energy consumption across the United States," Applied Energy, Elsevier, vol. 277(C).
    7. Tran, Duc-Hoc & Luong, Duc-Long & Chou, Jui-Sheng, 2020. "Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings," Energy, Elsevier, vol. 191(C).
    8. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Khajavi, Hamed & Rastgoo, Amir, 2023. "Improving the prediction of heating energy consumed at residential buildings using a combination of support vector regression and meta-heuristic algorithms," Energy, Elsevier, vol. 272(C).
    10. Hossein Moayedi & Amir Mosavi, 2021. "Double-Target Based Neural Networks in Predicting Energy Consumption in Residential Buildings," Energies, MDPI, vol. 14(5), pages 1-25, March.
    11. Ghadiri, Mehdi & Rassafi, Amir Abbas & Mirbaha, Babak, 2019. "The effects of traffic zoning with regular geometric shapes on the precision of trip production models," Journal of Transport Geography, Elsevier, vol. 78(C), pages 150-159.
    12. Olympia Roeva & Dafina Zoteva & Gergana Roeva & Velislava Lyubenova, 2023. "An Efficient Hybrid of an Ant Lion Optimizer and Genetic Algorithm for a Model Parameter Identification Problem," Mathematics, MDPI, vol. 11(6), pages 1-22, March.
    13. Cai, Wei & Wen, Xiaodong & Li, Chaoen & Shao, Jingjing & Xu, Jianguo, 2023. "Predicting the energy consumption in buildings using the optimized support vector regression model," Energy, Elsevier, vol. 273(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    2. Marian B. Gorzałczany & Filip Rudziński, 2024. "Energy Consumption Prediction in Residential Buildings—An Accurate and Interpretable Machine Learning Approach Combining Fuzzy Systems with Evolutionary Optimization," Energies, MDPI, vol. 17(13), pages 1-24, July.
    3. Jiang, Feifeng & Ma, Jun & Li, Zheng & Ding, Yuexiong, 2022. "Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model," Energy, Elsevier, vol. 249(C).
    4. Sun, Jian & Liu, Gang & Sun, Boyang & Xiao, Gang, 2021. "Light-stacking strengthened fusion based building energy consumption prediction framework via variable weight feature selection," Applied Energy, Elsevier, vol. 303(C).
    5. Piscitelli, Marco Savino & Giudice, Rocco & Capozzoli, Alfonso, 2024. "A holistic time series-based energy benchmarking framework for applications in large stocks of buildings," Applied Energy, Elsevier, vol. 357(C).
    6. Karol Bot & Samira Santos & Inoussa Laouali & Antonio Ruano & Maria da Graça Ruano, 2021. "Design of Ensemble Forecasting Models for Home Energy Management Systems," Energies, MDPI, vol. 14(22), pages 1-37, November.
    7. Khajavi, Hamed & Rastgoo, Amir, 2023. "Improving the prediction of heating energy consumed at residential buildings using a combination of support vector regression and meta-heuristic algorithms," Energy, Elsevier, vol. 272(C).
    8. Chou, Jui-Sheng & Truong, Dinh-Nhat & Kuo, Ching-Chiun, 2021. "Imaging time-series with features to enable visual recognition of regional energy consumption by bio-inspired optimization of deep learning," Energy, Elsevier, vol. 224(C).
    9. Jonghoon Kim & Soo-Young Moon & Daehee Jang, 2023. "Spatial Model for Energy Consumption of LEED-Certified Buildings," Sustainability, MDPI, vol. 15(22), pages 1-15, November.
    10. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    11. Li, Shuguang & Leng, Yuchi & Chaturvedi, Rishabh & Dutta, Ashit Kumar & Abdullaeva, Barno Sayfutdinovna & Fouad, Yasser, 2024. "Sustainable freshwater/energy supply through geothermal-centered layout tailored with humidification-dehumidification desalination unit; Optimized by regression machine learning techniques," Energy, Elsevier, vol. 303(C).
    12. Sumit Saroha & Marta Zurek-Mortka & Jerzy Ryszard Szymanski & Vineet Shekher & Pardeep Singla, 2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals," Energies, MDPI, vol. 14(19), pages 1-21, September.
    13. Sami Kabir & Mohammad Shahadat Hossain & Karl Andersson, 2024. "An Advanced Explainable Belief Rule-Based Framework to Predict the Energy Consumption of Buildings," Energies, MDPI, vol. 17(8), pages 1-18, April.
    14. Merlin Keller & Guillaume Damblin & Alberto Pasanisi & Mathieu Schumann & Pierre Barbillon & Fabrizio Ruggeri, 2022. "Validation of a Computer Code for the Energy Consumption of a Building, with Application to Optimal Electric Bill Pricing," Post-Print hal-04071903, HAL.
    15. Jiaxin Zhang & Zhilin Yu & Yunqin Li & Xueqiang Wang, 2023. "Uncovering Bias in Objective Mapping and Subjective Perception of Urban Building Functionality: A Machine Learning Approach to Urban Spatial Perception," Land, MDPI, vol. 12(7), pages 1-20, June.
    16. Meng Wang & Junqi Yu & Meng Zhou & Wei Quan & Renyin Cheng, 2023. "Joint Forecasting Model for the Hourly Cooling Load and Fluctuation Range of a Large Public Building Based on GA-SVM and IG-SVM," Sustainability, MDPI, vol. 15(24), pages 1-23, December.
    17. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Zhou, Xiao & Huang, Zhou & Scheuer, Bronte & Wang, Han & Zhou, Guoqing & Liu, Yu, 2023. "High-resolution estimation of building energy consumption at the city level," Energy, Elsevier, vol. 275(C).
    19. Li, Wuyan & Li, Xianting & Gao, Yijun & Shi, Wenxing, 2022. "Thermo-economic evaluation for energy retrofitting building ventilation system based on run-around heat recovery system," Energy, Elsevier, vol. 260(C).
    20. Guan, Zepeng & Hossain, Mohammad Razib & Sheikh, Muhammad Ramzan & Khan, Zeeshan & Gu, Xiao, 2023. "Unveiling the interconnectedness between energy-related GHGs and pro-environmental energy technology: Lessons from G-7 economies with MMQR approach," Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.