IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v2y2009i2p427-444d5239.html
   My bibliography  Save this article

A Microscale Modeling Tool for the Design and Optimization of Solid Oxide Fuel Cells

Author

Listed:
  • Shixue Liu

    (Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
    Department of Physics, University of Science and Technology of China, Hefei 230026, China
    Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
    Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao 266101, China)

  • Wei Kong

    (Department of Physics, University of Science and Technology of China, Hefei 230026, China)

  • Zijing Lin

    (Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
    Department of Physics, University of Science and Technology of China, Hefei 230026, China)

Abstract

A two dimensional numerical model of a solid oxide fuel cell (SOFC) with electrode functional layers is presented. The model incorporates the partial differential equations for mass transport, electric conduction and electrochemical reactions in the electrode functional layers, the anode support layer, the cathode current collection layer and at the electrode/electrolyte interfaces. A dusty gas model is used in modeling the gas transport in porous electrodes. The model is capable of providing results in good agreement with the experimental I-V relationship. Numerical examples are presented to illustrate the applications of this numerical model as a tool for the design and optimization of SOFCs. For a stack assembly of a pitch width of 2 mm and an interconnect-electrode contact resistance of 0.025 Ωcm 2 , a typical SOFC stack cell should consist of a rib width of 0.9 mm, a cathode current collection layer thickness of 200–300 μm, a cathode functional layer thickness of 20–40 μm, and an anode functional layer thickness of 10–20 μm in order to achieve optimal performance.

Suggested Citation

  • Shixue Liu & Wei Kong & Zijing Lin, 2009. "A Microscale Modeling Tool for the Design and Optimization of Solid Oxide Fuel Cells," Energies, MDPI, vol. 2(2), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:2:y:2009:i:2:p:427-444:d:5239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/2/2/427/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/2/2/427/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongqing Wang & Bo An & Ke Wang & Yan Cao & Fan Gao, 2020. "Identification of Restricting Parameters on Steps toward the Intermediate-Temperature Planar Solid Oxide Fuel Cell," Energies, MDPI, vol. 13(23), pages 1-15, December.
    2. Ebrahim Farjah & Mosayeb Bornapour & Taher Niknam & Bahman Bahmanifirouzi, 2012. "Placement of Combined Heat, Power and Hydrogen Production Fuel Cell Power Plants in a Distribution Network," Energies, MDPI, vol. 5(3), pages 1-25, March.
    3. Jeon, Dong Hyup, 2019. "Computational fluid dynamics simulation of anode-supported solid oxide fuel cells with implementing complete overpotential model," Energy, Elsevier, vol. 188(C).
    4. Yongqing Wang & Xingchen Li & Zhenning Guo & Ke Wang & Yan Cao, 2021. "Effect of the Reactant Transportation on Performance of a Planar Solid Oxide Fuel Cell," Energies, MDPI, vol. 14(4), pages 1-14, February.
    5. Meiting Guo & Xiao Ru & Zijing Lin & Guoping Xiao & Jianqiang Wang, 2020. "Optimization Design of Rib Width and Performance Analysis of Solid Oxide Electrolysis Cell," Energies, MDPI, vol. 13(20), pages 1-18, October.
    6. Jee Min Park & Dae Yun Kim & Jong Dae Baek & Yong-Jin Yoon & Pei-Chen Su & Seong Hyuk Lee, 2018. "Effect of Electrolyte Thickness on Electrochemical Reactions and Thermo-Fluidic Characteristics inside a SOFC Unit Cell," Energies, MDPI, vol. 11(3), pages 1-15, February.
    7. Wei Kong & Xiang Gao & Shixue Liu & Shichuan Su & Daifen Chen, 2014. "Optimization of the Interconnect Ribs for a Cathode-Supported Solid Oxide Fuel Cell," Energies, MDPI, vol. 7(1), pages 1-19, January.
    8. Jianguo Zhao & Zihan Lin & Mingjue Zhou, 2022. "Three-Dimensional Modeling and Performance Study of High Temperature Solid Oxide Electrolysis Cell with Metal Foam," Sustainability, MDPI, vol. 14(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:2:y:2009:i:2:p:427-444:d:5239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.