IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1925-d345456.html
   My bibliography  Save this article

The Use of Artificial Neural Networks to Analyze Greenhouse Gas and Air Pollutant Emissions from the Mining and Quarrying Sector in the European Union

Author

Listed:
  • Jarosław Brodny

    (Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Magdalena Tutak

    (Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 44-100 Gliwice, Poland)

Abstract

The European Union (EU) is considered one of the most economically developed regions worldwide. It was driven by the mining industry for several decades. Despite certain changes in this area, a number of mineral and energy resources are still being mined in the EU. Nevertheless, mining activities are accompanied by many unfavorable phenomena, especially for the environment, such as greenhouse gas and air pollutant emissions. The great diversity of the EU countries in terms of the size of the “mining and quarrying” sector means that both the volume and structure of these emissions in individual countries varies. In order to assess the current state of affairs, research was conducted to look at the structure and volume of these emissions in individual EU countries. The aim of the study was to divide these countries into homogenous groups by structure and volume of studied emissions. In order to reflect both the specificity and diversity of the EU countries, this division was based on the seven most important gases (CO 2 , CH 4 , N 2 O, NH 3 , NMVOC, CO, NO x ) and two types of particulate matter (PM 2.5, PM 10) emitted into the atmosphere from the sector in question. The volume of studied emissions was also compared to the number of inhabitants of each EU country and the gross value added (GVA) by the mining and quarrying sector. This approach enabled a new and broader view on the issue of gas and air pollutant emissions associated with mining activities. The artificial Kohonen’s neural networks were used for the analysis. The developed method, the analyses and the results constitute a new approach to studying such emissions in the EU. Research that looks only at the emission of harmful substances into the environment in relation to their absolute values fail to fully reflect the complexity of this problem in individual EU countries. The presented approach and the results should broaden the knowledge in the field of harmful substance emissions from the mining and quarrying sector, which should be utilized in the process of implementing the new European climate strategy referred to as “The European Green Deal”.

Suggested Citation

  • Jarosław Brodny & Magdalena Tutak, 2020. "The Use of Artificial Neural Networks to Analyze Greenhouse Gas and Air Pollutant Emissions from the Mining and Quarrying Sector in the European Union," Energies, MDPI, vol. 13(8), pages 1-31, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1925-:d:345456
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1925/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1925/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ronald A. Halim & Lucie Kirstein & Olaf Merk & Luis M. Martinez, 2018. "Decarbonization Pathways for International Maritime Transport: A Model-Based Policy Impact Assessment," Sustainability, MDPI, vol. 10(7), pages 1-30, June.
    2. Hyunji Im & Yunsoung Kim, 2020. "The Electrification of Cooking Methods in Korea—Impact on Energy Use and Greenhouse Gas Emissions," Energies, MDPI, vol. 13(3), pages 1-9, February.
    3. Miranda R. Gorman & David A. Dzombak, 2019. "An Assessment of the Environmental Sustainability and Circularity of Future Scenarios of the Copper Life Cycle in the U.S," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    4. Magdalena Tutak & Jarosław Brodny, 2019. "Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process," Energies, MDPI, vol. 12(20), pages 1-28, October.
    5. Gerbaulet, C. & von Hirschhausen, C. & Kemfert, C. & Lorenz, C. & Oei, P.-Y., 2019. "European electricity sector decarbonization under different levels of foresight," Renewable Energy, Elsevier, vol. 141(C), pages 973-987.
    6. Bartholdsen, Hans-Karl & Eidens, Anna & Löffler, Konstantin & Seehaus, Frederik & Wejda, Felix & Burandt, Thorsten & Oei, Pao-Yu & Kemfert, Claudia & Hirschhausen, Christian von, 2019. "Pathways for Germany's Low-Carbon Energy Transformation Towards 2050," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(15), pages 1-33.
    7. Piotr Zientara & Anna Zamojska & Grzegorz Maciejewski & Anna Maria Nikodemska-Wołowik, 2019. "Environmentalism and Polish Coal Mining: A Multilevel Study," Sustainability, MDPI, vol. 11(11), pages 1-15, May.
    8. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 543(7645), pages 367-372, March.
    9. Jarosław Brodny & Magdalena Tutak, 2020. "Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources," Energies, MDPI, vol. 13(4), pages 1-37, February.
    10. Siavash Khalili & Eetu Rantanen & Dmitrii Bogdanov & Christian Breyer, 2019. "Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World," Energies, MDPI, vol. 12(20), pages 1-54, October.
    11. Jarosław Brodny & Magdalena Tutak, 2019. "Analysing the Utilisation Effectiveness of Mining Machines Using Independent Data Acquisition Systems: A Case Study," Energies, MDPI, vol. 12(13), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magdalena Tutak & Jarosław Brodny & Dominika Siwiec & Robert Ulewicz & Peter Bindzár, 2020. "Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential," Energies, MDPI, vol. 13(24), pages 1-31, December.
    2. Davidescu, Adriana AnaMaria & Popovici, Oana Cristina & Strat, Vasile Alecsandru, 2022. "Estimating the impact of green ESIF in Romania using input-output model," International Review of Financial Analysis, Elsevier, vol. 84(C).
    3. Vitor Joao Pereira Domingues MARTINHO, 2023. "Energy Crops: Assessments In The European Union Agricultural Regions Through Machine Learning Approaches," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(1), pages 29-42, June.
    4. Adiqa Kausar Kiani & Wasim Ullah Khan & Muhammad Asif Zahoor Raja & Yigang He & Zulqurnain Sabir & Muhammad Shoaib, 2021. "Intelligent Backpropagation Networks with Bayesian Regularization for Mathematical Models of Environmental Economic Systems," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    5. Sergey Zhironkin & Elena Dotsenko, 2023. "Review of Transition from Mining 4.0 to 5.0 in Fossil Energy Sources Production," Energies, MDPI, vol. 16(15), pages 1-35, August.
    6. Huaiting Luo & Wei Zhou & Izhar Mithal Jiskani & Zhiming Wang, 2021. "Analyzing Characteristics of Particulate Matter Pollution in Open-Pit Coal Mines: Implications for Green Mining," Energies, MDPI, vol. 14(9), pages 1-19, May.
    7. Olga Zhironkina & Sergey Zhironkin, 2023. "Technological and Intellectual Transition to Mining 4.0: A Review," Energies, MDPI, vol. 16(3), pages 1-37, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawid Szurgacz & Sergey Zhironkin & Michal Cehlár & Stefan Vöth & Sam Spearing & Ma Liqiang, 2021. "A Step-by-Step Procedure for Tests and Assessment of the Automatic Operation of a Powered Roof Support," Energies, MDPI, vol. 14(3), pages 1-16, January.
    2. Dawid Szurgacz & Sergey Zhironkin & Stefan Vöth & Jiří Pokorný & A.J.S. (Sam) Spearing & Michal Cehlár & Marta Stempniak & Leszek Sobik, 2021. "Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure," Energies, MDPI, vol. 14(11), pages 1-18, June.
    3. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    4. Anna Bluszcz & Anna Manowska, 2020. "Differentiation of the Level of Sustainable Development of Energy Markets in the European Union Countries," Energies, MDPI, vol. 13(18), pages 1-20, September.
    5. Rafał Trzaska & Adam Sulich & Michał Organa & Jerzy Niemczyk & Bartosz Jasiński, 2021. "Digitalization Business Strategies in Energy Sector: Solving Problems with Uncertainty under Industry 4.0 Conditions," Energies, MDPI, vol. 14(23), pages 1-21, November.
    6. Löffler, Konstantin & Burandt, Thorsten & Hainsch, Karlo & Oei, Pao-Yu & Seehaus, Frederik & Wejda, Felix, 2022. "Chances and barriers for Germany's low carbon transition - Quantifying uncertainties in key influential factors," Energy, Elsevier, vol. 239(PA).
    7. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Khalili, Siavash & Muñoz-Cerón, Emilio & Breyer, Christian, 2021. "The impact of renewable energy and sector coupling on the pathway towards a sustainable energy system in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    8. Jarosław Brodny & Magdalena Tutak & Saqib Ahmad Saki, 2020. "Forecasting the Structure of Energy Production from Renewable Energy Sources and Biofuels in Poland," Energies, MDPI, vol. 13(10), pages 1-31, May.
    9. Nan Zhang & Wei Liu & Yun Zhang & Pengfei Shan & Xilin Shi, 2020. "Microscopic Pore Structure of Surrounding Rock for Underground Strategic Petroleum Reserve (SPR) Caverns in Bedded Rock Salt," Energies, MDPI, vol. 13(7), pages 1-22, March.
    10. Michael Metzger & Mathias Duckheim & Marco Franken & Hans Joerg Heger & Matthias Huber & Markus Knittel & Till Kolster & Martin Kueppers & Carola Meier & Dieter Most & Simon Paulus & Lothar Wyrwoll & , 2021. "Pathways toward a Decarbonized Future—Impact on Security of Supply and System Stability in a Sustainable German Energy System," Energies, MDPI, vol. 14(3), pages 1-28, January.
    11. Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
    12. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    13. Endl, Andreas & Tost, Michael & Hitch, Michael & Moser, Peter & Feiel, Susanne, 2021. "Europe's mining innovation trends and their contribution to the sustainable development goals: Blind spots and strong points," Resources Policy, Elsevier, vol. 74(C).
    14. Neha Mehta & Giovanna Antonella Dino & Iride Passarella & Franco Ajmone-Marsan & Piergiorgio Rossetti & Domenico Antonio De Luca, 2020. "Assessment of the Possible Reuse of Extractive Waste Coming from Abandoned Mine Sites: Case Study in Gorno, Italy," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    15. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    16. Yang Yu & Jianbiao Bai & Xiangyu Wang & Lianying Zhang, 2020. "Control of the Surrounding Rock of a Goaf-Side Entry Driving Heading Mining Face," Sustainability, MDPI, vol. 12(7), pages 1-16, March.
    17. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
    18. Daniel Rasbash & Kevin Joseph Dillman & Jukka Heinonen & Eyjólfur Ingi Ásgeirsson, 2023. "A National and Regional Greenhouse Gas Breakeven Assessment of EVs across North America," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    19. Yongkang Yang & Qiaoyi Du & Chenlong Wang & Yu Bai, 2020. "Research on the Method of Methane Emission Prediction Using Improved Grey Radial Basis Function Neural Network Model," Energies, MDPI, vol. 13(22), pages 1-15, November.
    20. Fabre, Adrien & Fodha, Mouez & Ricci, Francesco, 2020. "Mineral resources for renewable energy: Optimal timing of energy production," Resource and Energy Economics, Elsevier, vol. 59(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1925-:d:345456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.