IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v190y2021icp1130-1149.html
   My bibliography  Save this article

Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants

Author

Listed:
  • Vasallo, Manuel Jesús
  • Cojocaru, Emilian Gelu
  • Gegúndez, Manuel Emilio
  • Marín, Diego

Abstract

This paper proposes several data-based models for solar fields (SF) of concentrating solar power (CSP) plants. The proposed models estimate SF thermal output from solar resource data and aim to replace first-principles-based SF models typical in CSP generation schedulers. The advantages of the first models as opposed to the second ones are the ease in their development and their adaptability to changes in the plant, facilitating the forecast of SF thermal output. This information is very useful in order to take advantage of the operational flexibility of CSP plants, which is the main attribute that differentiates them from other renewable sources. The applicability of these models is studied in the optimal generation self-scheduling problem of a CSP plant participating in a day-ahead energy market. A simulation-based economic study has been performed using realistic data, where several scheduling strategies are evaluated in a 50 MW parabolic-trough plant with thermal storage. The scheduling strategies differ only in the model used for the SF. The study shows that the data-based models provide results very similar to those obtained with a first-principles-based SF model. Therefore, they can be used as a viable alternative, while significantly simplifying the design and development of the generation scheduler.

Suggested Citation

  • Vasallo, Manuel Jesús & Cojocaru, Emilian Gelu & Gegúndez, Manuel Emilio & Marín, Diego, 2021. "Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1130-1149.
  • Handle: RePEc:eee:matcom:v:190:y:2021:i:c:p:1130-1149
    DOI: 10.1016/j.matcom.2021.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421002597
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    2. Mahmoudimehr, Javad & Sebghati, Parvin, 2019. "A novel multi-objective Dynamic Programming optimization method: Performance management of a solar thermal power plant as a case study," Energy, Elsevier, vol. 168(C), pages 796-814.
    3. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Keyif, Enes & Hornung, Michael & Zhu, Wanshan, 2020. "Optimal configurations and operations of concentrating solar power plants under new market trends," Applied Energy, Elsevier, vol. 270(C).
    5. Wagner, Michael J. & Newman, Alexandra M. & Hamilton, William T. & Braun, Robert J., 2017. "Optimized dispatch in a first-principles concentrating solar power production model," Applied Energy, Elsevier, vol. 203(C), pages 959-971.
    6. Bourbon, R. & Ngueveu, S.U. & Roboam, X. & Sareni, B. & Turpin, C. & Hernandez-Torres, D., 2019. "Energy management optimization of a smart wind power plant comparing heuristic and linear programming methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 418-431.
    7. Royo, Alberto & García, Ignacio & Torres, José Luis, 2018. "Generation of the site-adapted clearest-sky year of direct normal irradiance for solar concentrating technologies," Renewable Energy, Elsevier, vol. 128(PA), pages 250-264.
    8. Martinek, Janna & Jorgenson, Jennie & Mehos, Mark & Denholm, Paul, 2018. "A comparison of price-taker and production cost models for determining system value, revenue, and scheduling of concentrating solar power plants," Applied Energy, Elsevier, vol. 231(C), pages 854-865.
    9. Lopes, Francis M. & Conceição, Ricardo & Fasquelle, Thomas & Silva, Hugo G. & Salgado, Rui & Canhoto, Paulo & Collares-Pereira, Manuel, 2020. "Predicted direct solar radiation (ECMWF) for optimized operational strategies of linear focus parabolic-trough systems," Renewable Energy, Elsevier, vol. 151(C), pages 378-391.
    10. McPherson, Madeleine & Mehos, Mark & Denholm, Paul, 2020. "Leveraging concentrating solar power plant dispatchability: A review of the impacts of global market structures and policy," Energy Policy, Elsevier, vol. 139(C).
    11. Vasallo, Manuel Jesús & Bravo, José Manuel, 2016. "A MPC approach for optimal generation scheduling in CSP plants," Applied Energy, Elsevier, vol. 165(C), pages 357-370.
    12. Cojocaru, Emilian Gelu & Bravo, José Manuel & Vasallo, Manuel Jesús & Santos, Diego Marín, 2019. "Optimal scheduling in concentrating solar power plants oriented to low generation cycling," Renewable Energy, Elsevier, vol. 135(C), pages 789-799.
    13. Ayuso, Pablo & Beltran, Hector & Segarra-Tamarit, Jorge & Pérez, Emilio, 2021. "Optimized profitability of LFP and NMC Li-ion batteries in residential PV applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 97-115.
    14. Pousinho, H.M.I. & Silva, H. & Mendes, V.M.F. & Collares-Pereira, M. & Pereira Cabrita, C., 2014. "Self-scheduling for energy and spinning reserve of wind/CSP plants by a MILP approach," Energy, Elsevier, vol. 78(C), pages 524-534.
    15. Kost, Christoph & Flath, Christoph M. & Möst, Dominik, 2013. "Concentrating solar power plant investment and operation decisions under different price and support mechanisms," Energy Policy, Elsevier, vol. 61(C), pages 238-248.
    16. Yang, Zhang & Ce, Li & Lian, Li, 2017. "Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods," Applied Energy, Elsevier, vol. 190(C), pages 291-305.
    17. Du, Ershun & Zhang, Ning & Hodge, Bri-Mathias & Kang, Chongqing & Kroposki, Benjamin & Xia, Qing, 2018. "Economic justification of concentrating solar power in high renewable energy penetrated power systems," Applied Energy, Elsevier, vol. 222(C), pages 649-661.
    18. Dominguez, R. & Baringo, L. & Conejo, A.J., 2012. "Optimal offering strategy for a concentrating solar power plant," Applied Energy, Elsevier, vol. 98(C), pages 316-325.
    19. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abiodun, Kehinde & Hood, Karoline & Cox, John L. & Newman, Alexandra M. & Zolan, Alex J., 2023. "The value of concentrating solar power in ancillary services markets," Applied Energy, Elsevier, vol. 334(C).
    2. Kahvecioğlu, Gökçe & Morton, David P. & Wagner, Michael J., 2022. "Dispatch optimization of a concentrating solar power system under uncertain solar irradiance and energy prices," Applied Energy, Elsevier, vol. 326(C).
    3. Cojocaru, Emilian Gelu & Bravo, José Manuel & Vasallo, Manuel Jesús & Santos, Diego Marín, 2019. "Optimal scheduling in concentrating solar power plants oriented to low generation cycling," Renewable Energy, Elsevier, vol. 135(C), pages 789-799.
    4. Martinek, Janna & Jorgenson, Jennie & Mehos, Mark & Denholm, Paul, 2018. "A comparison of price-taker and production cost models for determining system value, revenue, and scheduling of concentrating solar power plants," Applied Energy, Elsevier, vol. 231(C), pages 854-865.
    5. Xiong, Houbo & Yan, Mingyu & Guo, Chuangxin & Ding, Yi & Zhou, Yue, 2023. "DP based multi-stage ARO for coordinated scheduling of CSP and wind energy with tractable storage scheme: Tight formulation and solution technique," Applied Energy, Elsevier, vol. 333(C).
    6. Xianhua Gao & Shangshang Wei & Chunlin Xia & Yiguo Li, 2022. "Flexible Operation of Concentrating Solar Power Plant with Thermal Energy Storage Based on a Coordinated Control Strategy," Energies, MDPI, vol. 15(13), pages 1-16, July.
    7. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    8. Du, Ershun & Zhang, Ning & Hodge, Bri-Mathias & Kang, Chongqing & Kroposki, Benjamin & Xia, Qing, 2018. "Economic justification of concentrating solar power in high renewable energy penetrated power systems," Applied Energy, Elsevier, vol. 222(C), pages 649-661.
    9. Feng, Chenjia & Shao, Chengcheng & Wang, Xifan, 2021. "CSP clustering in unit commitment for power system production cost modeling," Renewable Energy, Elsevier, vol. 168(C), pages 1217-1228.
    10. Coronas, Sergio & Martín, Helena & de la Hoz, Jordi & García de Vicuña, Luis & Castilla, Miguel, 2021. "MONTE-CARLO probabilistic valuation of concentrated solar power systems in Spain under the 2014 retroactive regulatory framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Wang, Anming & Liu, Jiping & Zhang, Shunqi & Liu, Ming & Yan, Junjie, 2020. "Steam generation system operation optimization in parabolic trough concentrating solar power plants under cloudy conditions," Applied Energy, Elsevier, vol. 265(C).
    12. Fang, Yuchen & Zhao, Shuqiang, 2020. "Look-ahead bidding strategy for concentrating solar power plants with wind farms," Energy, Elsevier, vol. 203(C).
    13. McPherson, Madeleine & Mehos, Mark & Denholm, Paul, 2020. "Leveraging concentrating solar power plant dispatchability: A review of the impacts of global market structures and policy," Energy Policy, Elsevier, vol. 139(C).
    14. Ana Carolina do Amaral Burghi & Tobias Hirsch & Robert Pitz-Paal, 2020. "Artificial Learning Dispatch Planning for Flexible Renewable-Energy Systems," Energies, MDPI, vol. 13(6), pages 1-21, March.
    15. Vasallo, Manuel Jesús & Bravo, José Manuel, 2016. "A MPC approach for optimal generation scheduling in CSP plants," Applied Energy, Elsevier, vol. 165(C), pages 357-370.
    16. Ana Carolina do Amaral Burghi & Tobias Hirsch & Robert Pitz-Paal, 2020. "Artificial Learning Dispatch Planning with Probabilistic Forecasts: Using Uncertainties as an Asset," Energies, MDPI, vol. 13(3), pages 1-25, February.
    17. Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
    18. Dowling, Alexander W. & Zheng, Tian & Zavala, Victor M., 2017. "Economic assessment of concentrated solar power technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1019-1032.
    19. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    20. Mena, R. & Escobar, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D., 2019. "The impact of concentrated solar power in electric power systems: A Chilean case study," Applied Energy, Elsevier, vol. 235(C), pages 258-283.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:190:y:2021:i:c:p:1130-1149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.