Editorial to the Special Issue “AI Applications to Power Systems”
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mahmoud G. Hemeida & Salem Alkhalaf & Al-Attar A. Mohamed & Abdalla Ahmed Ibrahim & Tomonobu Senjyu, 2020. "Distributed Generators Optimization Based on Multi-Objective Functions Using Manta Rays Foraging Optimization Algorithm (MRFO)," Energies, MDPI, vol. 13(15), pages 1-37, July.
- Carlo Olivieri & Francesco de Paulis & Antonio Orlandi & Cosimo Pisani & Giorgio Giannuzzi & Roberto Salvati & Roberto Zaottini, 2020. "Estimation of Modal Parameters for Inter-Area Oscillations Analysis by a Machine Learning Approach with Offline Training," Energies, MDPI, vol. 13(23), pages 1-20, December.
- Alvaro Furlani Bastos & Surya Santoso, 2021. "Optimization Techniques for Mining Power Quality Data and Processing Unbalanced Datasets in Machine Learning Applications," Energies, MDPI, vol. 14(2), pages 1-21, January.
- Jin-Gyeom Kim & Bowon Lee, 2020. "Automatic P2P Energy Trading Model Based on Reinforcement Learning Using Long Short-Term Delayed Reward," Energies, MDPI, vol. 13(20), pages 1-27, October.
- Miftah Al Karim & Jonathan Currie & Tek-Tjing Lie, 2020. "Distributed Machine Learning on Dynamic Power System Data Features to Improve Resiliency for the Purpose of Self-Healing," Energies, MDPI, vol. 13(13), pages 1-20, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
- Xueping Li & Gerald Jones, 2022. "Optimal Sizing, Location, and Assignment of Photovoltaic Distributed Generators with an Energy Storage System for Islanded Microgrids," Energies, MDPI, vol. 15(18), pages 1-22, September.
- Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
- Nastaran Gholizadeh & Petr Musilek, 2021. "Distributed Learning Applications in Power Systems: A Review of Methods, Gaps, and Challenges," Energies, MDPI, vol. 14(12), pages 1-18, June.
- Do-In Kim, 2021. "Complementary Feature Extractions for Event Identification in Power Systems Using Multi-Channel Convolutional Neural Network," Energies, MDPI, vol. 14(15), pages 1-15, July.
- Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy," Applied Energy, Elsevier, vol. 318(C).
- Samende, Cephas & Cao, Jun & Fan, Zhong, 2022. "Multi-agent deep deterministic policy gradient algorithm for peer-to-peer energy trading considering distribution network constraints," Applied Energy, Elsevier, vol. 317(C).
- Habib Ur Rehman & Arif Hussain & Waseem Haider & Sayyed Ahmad Ali & Syed Ali Abbas Kazmi & Muhammad Huzaifa, 2023. "Optimal Planning of Solar Photovoltaic (PV) and Wind-Based DGs for Achieving Techno-Economic Objectives across Various Load Models," Energies, MDPI, vol. 16(5), pages 1-38, March.
- Seyed Siavash Karimi Madahi & Andrija T. Sarić, 2020. "Multi-Criteria Optimal Sizing and Allocation of Renewable and Non-Renewable Distributed Generation Resources at 63 kV/20 kV Substations," Energies, MDPI, vol. 13(20), pages 1-22, October.
- Qiu, Dawei & Ye, Yujian & Papadaskalopoulos, Dimitrios & Strbac, Goran, 2021. "Scalable coordinated management of peer-to-peer energy trading: A multi-cluster deep reinforcement learning approach," Applied Energy, Elsevier, vol. 292(C).
- Liangyi Pu & Song Wang & Xiaodong Huang & Xing Liu & Yawei Shi & Huiwei Wang, 2022. "Peer-to-Peer Trading for Energy-Saving Based on Reinforcement Learning," Energies, MDPI, vol. 15(24), pages 1-16, December.
- Charbonnier, Flora & Morstyn, Thomas & McCulloch, Malcolm D., 2022. "Scalable multi-agent reinforcement learning for distributed control of residential energy flexibility," Applied Energy, Elsevier, vol. 314(C).
- Meritxell Domènech Monfort & César De Jesús & Natapon Wanapinit & Niklas Hartmann, 2022. "A Review of Peer-to-Peer Energy Trading with Standard Terminology Proposal and a Techno-Economic Characterisation Matrix," Energies, MDPI, vol. 15(23), pages 1-29, November.
- Hannie Zang & JongWon Kim, 2021. "Reinforcement Learning Based Peer-to-Peer Energy Trade Management Using Community Energy Storage in Local Energy Market," Energies, MDPI, vol. 14(14), pages 1-18, July.
- Wang, Yi & Qiu, Dawei & Strbac, Goran, 2022. "Multi-agent deep reinforcement learning for resilience-driven routing and scheduling of mobile energy storage systems," Applied Energy, Elsevier, vol. 310(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5667-:d:632059. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.