IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4179-d832862.html
   My bibliography  Save this article

A Catalytic Effectiveness Factor for a Microbial Electrolysis Cell Biofilm Model

Author

Listed:
  • René Alejandro Flores-Estrella

    (Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, Tapachula 30700, Mexico)

  • Victor Alcaraz-Gonzalez

    (Departamento de Ingeniería Química, Universidad de Guadalajara, Guadalajara 44430, Mexico)

  • Andreas Haarstrick

    (Leichtweiß Institut, Technische Universitat Braunschweig, 38106 Braunschweig, Germany)

Abstract

The aim of this work is to propose a methodology to obtain an effectiveness factor for biofilm in a microbial electrolysis cell (MEC) system and use it to reduce a partial differential equation (PDE) biofilm MEC model to an ordinary differential equation (ODE) MEC model. The biofilm mass balances of the different species are considered. In addition, it is considered that all the involved microorganisms are attached to the anodic biological film. Three effectiveness factors are obtained from partial differential equations describing the spatial distributions of potential and substrate in the biofilm. Then, a model reduction is carried out using the global mass balances of the different species in the system. The reduced model with three uncertain but bounded effectiveness factors is evaluated numerically and analyzed in the sense of stability and parametric sensibility to demonstrate its applicability. The reduced ODE model is compared with a validated model taken from the literature, and the results are in good agreement. The biofilm effectiveness factor in MEC systems can be extended to the reduction of PDE models to obtain ODE models that are commonly used in optimization and control problems.

Suggested Citation

  • René Alejandro Flores-Estrella & Victor Alcaraz-Gonzalez & Andreas Haarstrick, 2022. "A Catalytic Effectiveness Factor for a Microbial Electrolysis Cell Biofilm Model," Energies, MDPI, vol. 15(11), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4179-:d:832862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    2. Lewis, Alex J. & Borole, Abhijeet P., 2019. "Microbial electrolysis cells using complex substrates achieve high performance via continuous feeding-based control of reactor concentrations and community structure," Applied Energy, Elsevier, vol. 240(C), pages 608-616.
    3. Escapa, A. & Mateos, R. & Martínez, E.J. & Blanes, J., 2016. "Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 942-956.
    4. Leicester, Daniel & Amezaga, Jaime & Heidrich, Elizabeth, 2020. "Is bioelectrochemical energy production from wastewater a reality? Identifying and standardising the progress made in scaling up microbial electrolysis cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satinover, Scott J. & Schell, Dan & Borole, Abhijeet P., 2020. "Achieving high hydrogen productivities of 20 L/L-day via microbial electrolysis of corn stover fermentation products," Applied Energy, Elsevier, vol. 259(C).
    2. Lin, Richen & O'Shea, Richard & Deng, Chen & Wu, Benteng & Murphy, Jerry D., 2021. "A perspective on the efficacy of green gas production via integration of technologies in novel cascading circular bio-systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Leicester, Daniel & Amezaga, Jaime & Heidrich, Elizabeth, 2020. "Is bioelectrochemical energy production from wastewater a reality? Identifying and standardising the progress made in scaling up microbial electrolysis cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Ilias Apostolopoulos & Georgios Bampos & Amaia Soto Beobide & Stefanos Dailianis & George Voyiatzis & Symeon Bebelis & Gerasimos Lyberatos & Georgia Antonopoulou, 2021. "The Effect of Anode Material on the Performance of a Hydrogen Producing Microbial Electrolysis Cell, Operating with Synthetic and Real Wastewaters," Energies, MDPI, vol. 14(24), pages 1-20, December.
    5. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    6. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    7. Wu, Lan & Wei, Wei & Song, Lan & Woźniak-Karczewska, Marta & Chrzanowski, Łukasz & Ni, Bing-Jie, 2021. "Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. Beegle, Jeffrey R. & Borole, Abhijeet P., 2018. "Energy production from waste: Evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 343-351.
    9. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Jiang, Yong & Yang, Xufei & Liang, Peng & Liu, Panpan & Huang, Xia, 2018. "Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 292-305.
    11. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    12. Pooja Dange & Soumya Pandit & Dipak Jadhav & Poojhaa Shanmugam & Piyush Kumar Gupta & Sanjay Kumar & Manu Kumar & Yung-Hun Yang & Shashi Kant Bhatia, 2021. "Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    13. Bhim Sen Thapa & Soumya Pandit & Sanchita Bipin Patwardhan & Sakshi Tripathi & Abhilasha Singh Mathuriya & Piyush Kumar Gupta & Ram Bharosay Lal & Tanmoy Roy Tusher, 2022. "Application of Microbial Fuel Cell (MFC) for Pharmaceutical Wastewater Treatment: An Overview and Future Perspectives," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    14. Shuai Luo & Hongyue Sun & Qingyun Ping & Ran Jin & Zhen He, 2016. "A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects," Energies, MDPI, vol. 9(2), pages 1-27, February.
    15. Johanna C. Winder & Mark Hewlett & Ping Liu & John Love, 2022. "Conversion of Biomass to Chemicals via Electrofermentation of Lactic Acid Bacteria," Energies, MDPI, vol. 15(22), pages 1-15, November.
    16. Ahmed Fathy & Hegazy Rezk & Dalia Yousri & Abdullah G. Alharbi & Sulaiman Alshammari & Yahia B. Hassan, 2023. "Maximizing Bio-Hydrogen Production from an Innovative Microbial Electrolysis Cell Using Artificial Intelligence," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    17. Jiseon You & John Greenman & Ioannis Ieropoulos, 2018. "Novel Analytical Microbial Fuel Cell Design for Rapid in Situ Optimisation of Dilution Rate and Substrate Supply Rate, by Flow, Volume Control and Anode Placement," Energies, MDPI, vol. 11(9), pages 1-12, September.
    18. Liu, Hong-zhou & Chen, Tie-zhu & Wang, Nan & Zhang, Yu-rui & Li, Jian-chang, 2024. "A new strategy for improving MFC power output by shared electrode MFC–MEC coupling," Applied Energy, Elsevier, vol. 359(C).
    19. Daniarta, S. & Sowa, D. & Błasiak, P. & Imre, A.R. & Kolasiński, P., 2024. "Techno-economic survey of enhancing Power-to-Methane efficiency via waste heat recovery from electrolysis and biomethanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    20. Khan, M.Z. & Nizami, A.S. & Rehan, M. & Ouda, O.K.M. & Sultana, S. & Ismail, I.M. & Shahzad, K., 2017. "Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia," Applied Energy, Elsevier, vol. 185(P1), pages 410-420.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4179-:d:832862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.