IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8313-d699116.html
   My bibliography  Save this article

Three-Dimensional LiDAR Wake Measurements in an Offshore Wind Farm and Comparison with Gaussian and AL Wake Models

Author

Listed:
  • Xin Liu

    (Huaneng Clean Energy Research Institute, Beijing 102209, China)

  • Lailong Li

    (China Huaneng Group, Beijing 100031, China)

  • Shaoping Shi

    (Huaneng Clean Energy Research Institute, Beijing 102209, China)

  • Xinming Chen

    (Huaneng Clean Energy Research Institute, Beijing 102209, China)

  • Songhua Wu

    (College of Marine Technology, Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China)

  • Wenxin Lao

    (Huaneng Clean Energy Research Institute, Beijing 102209, China)

Abstract

Huaneng Rudong 300 MW offshore wind farm project is located in eastern China. The wake effect is one of the major concerns for wind farm operators, as all 70 units are plotted in ranks, and the sea surface roughness is low. This paper investigated the wake intensity by combining a field test and a numerical simulation. To carry out further yaw optimization, a Gaussian wake model was adopted. Firstly, a 3D Light Detection and Ranging device (LiDAR) was used to capture the features in both horizontal and vertical directions of the wake. It indicated that Gaussian wake model can precisely predict the characteristics under time average and steady state in the wind farm. The predicted annual energy production (AEP) of the whole wind farm by the Gaussian model is compared with the calculation result of the actuator line (AL)-based LES method, and the difference between the two methods is mostly under 10%.

Suggested Citation

  • Xin Liu & Lailong Li & Shaoping Shi & Xinming Chen & Songhua Wu & Wenxin Lao, 2021. "Three-Dimensional LiDAR Wake Measurements in an Offshore Wind Farm and Comparison with Gaussian and AL Wake Models," Energies, MDPI, vol. 14(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8313-:d:699116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8313/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8313/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamlaoui, M.N. & Smaili, A. & Dobrev, I. & Pereira, M. & Fellouah, H. & Khelladi, S., 2022. "Numerical and experimental investigations of HAWT near wake predictions using Particle Image Velocimetry and Actuator Disk Method," Energy, Elsevier, vol. 238(PB).
    2. Kim, Taewoo & Oh, Sejong & Yee, Kwanjung, 2015. "Improved actuator surface method for wind turbine application," Renewable Energy, Elsevier, vol. 76(C), pages 16-26.
    3. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    4. Parada, Leandro & Herrera, Carlos & Flores, Paulo & Parada, Victor, 2017. "Wind farm layout optimization using a Gaussian-based wake model," Renewable Energy, Elsevier, vol. 107(C), pages 531-541.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    2. Tao, Siyu & Xu, Qingshan & Feijóo, Andrés & Zheng, Gang & Zhou, Jiemin, 2020. "Wind farm layout optimization with a three-dimensional Gaussian wake model," Renewable Energy, Elsevier, vol. 159(C), pages 553-569.
    3. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    4. Song, Jeonghwan & Kim, Taewan & You, Donghyun, 2023. "Particle swarm optimization of a wind farm layout with active control of turbine yaws," Renewable Energy, Elsevier, vol. 206(C), pages 738-747.
    5. Zhang, Ziyu & Huang, Peng, 2023. "Prediction of multiple-wake velocity and wind power using a cosine-shaped wake model," Renewable Energy, Elsevier, vol. 219(P1).
    6. Kaldellis, John K. & Triantafyllou, Panagiotis & Stinis, Panagiotis, 2021. "Critical evaluation of Wind Turbines’ analytical wake models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Parada, Leandro & Herrera, Carlos & Flores, Paulo & Parada, Victor, 2018. "Assessing the energy benefit of using a wind turbine micro-siting model," Renewable Energy, Elsevier, vol. 118(C), pages 591-601.
    8. Masoudi, Seiied Mohsen & Baneshi, Mehdi, 2022. "Layout optimization of a wind farm considering grids of various resolutions, wake effect, and realistic wind speed and wind direction data: A techno-economic assessment," Energy, Elsevier, vol. 244(PB).
    9. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Ling, Ziyan & Zhao, Zhenzhou & Liu, Yige & Liu, Huiwen & Ali, Kashif & Liu, Yan & Wen, Yifan & Wang, Dingding & Li, Shijun & Su, Chunhao, 2024. "Multi-objective layout optimization for wind farms based on non-uniformly distributed turbulence and a new three-dimensional multiple wake model," Renewable Energy, Elsevier, vol. 227(C).
    11. Hyungyu Kim & Kwansu Kim & Carlo Luigi Bottasso & Filippo Campagnolo & Insu Paek, 2018. "Wind Turbine Wake Characterization for Improvement of the Ainslie Eddy Viscosity Wake Model," Energies, MDPI, vol. 11(10), pages 1-19, October.
    12. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    13. Ziyu Zhang & Peng Huang & Haocheng Sun, 2020. "A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit," Energies, MDPI, vol. 13(13), pages 1-20, June.
    14. Sarlak, H. & Meneveau, C. & Sørensen, J.N., 2015. "Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions," Renewable Energy, Elsevier, vol. 77(C), pages 386-399.
    15. Nicolas Tobin & Ali M. Hamed & Leonardo P. Chamorro, 2015. "An Experimental Study on the Effects ofWinglets on the Wake and Performance of a ModelWind Turbine," Energies, MDPI, vol. 8(10), pages 1-18, October.
    16. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Li, Qi, 2019. "A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes," Applied Energy, Elsevier, vol. 233, pages 975-984.
    17. Anagnostopoulos, Sokratis J. & Bauer, Jens & Clare, Mariana C.A. & Piggott, Matthew D., 2023. "Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models," Renewable Energy, Elsevier, vol. 218(C).
    18. Li, Siyi & Zhang, Mingrui & Piggott, Matthew D., 2023. "End-to-end wind turbine wake modelling with deep graph representation learning," Applied Energy, Elsevier, vol. 339(C).
    19. Razi, P. & Ramaprabhu, P. & Tarey, P. & Muglia, M. & Vermillion, C., 2022. "A low-order wake interaction modeling framework for the performance of ocean current turbines under turbulent conditions," Renewable Energy, Elsevier, vol. 200(C), pages 1602-1617.
    20. Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8313-:d:699116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.