IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2823-d176835.html
   My bibliography  Save this article

Wind Turbine Wake Characterization for Improvement of the Ainslie Eddy Viscosity Wake Model

Author

Listed:
  • Hyungyu Kim

    (Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon-si 24341, Korea)

  • Kwansu Kim

    (Department of Advanced Mechanical Engineering, Kangwon National University, Chuncheon-si 24341, Korea)

  • Carlo Luigi Bottasso

    (Wind Energy Institute, Technical University of Munich, 85748 Munich, Germany)

  • Filippo Campagnolo

    (Wind Energy Institute, Technical University of Munich, 85748 Munich, Germany)

  • Insu Paek

    (Division of Mechanical and Biomedical, Mechatronics and Materials Science and Engineering, Kangwon National University, Chuncheon-si 24341, Korea)

Abstract

This paper presents a modified version of the Ainslie eddy viscosity wake model and its accuracy by comparing it with selected exiting wake models and wind tunnel test results. The wind tunnel test was performed using a 1.9 m rotor diameter wind turbine model operating at a tip speed ratio similar to that of modern megawatt wind turbines. The control algorithms for blade pitch and generator torque used for below and above rated wind speed regions similar to those for multi-MW wind turbines were applied to the scaled wind turbine model. In order to characterize the influence of the wind turbine operating conditions on the wake, the wind turbine model was tested in both below and above rated wind speed regions at which the thrust coefficients of the rotor varied. The correction of the Ainslie eddy viscosity wake model was made by modifying the empirical equation of the original model using the wind tunnel test results with the Nelder-Mead simplex method for function minimization. The wake prediction accuracy of the modified wake model in terms of wind speed deficit was found to be improved by up to 6% compared to that of the original model. Comparisons with other existing wake models are also made in detail.

Suggested Citation

  • Hyungyu Kim & Kwansu Kim & Carlo Luigi Bottasso & Filippo Campagnolo & Insu Paek, 2018. "Wind Turbine Wake Characterization for Improvement of the Ainslie Eddy Viscosity Wake Model," Energies, MDPI, vol. 11(10), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2823-:d:176835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2823/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2823/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter J. Schubel & Richard J. Crossley, 2012. "Wind Turbine Blade Design," Energies, MDPI, vol. 5(9), pages 1-25, September.
    2. Lignarolo, L.E.M. & Ragni, D. & Krishnaswami, C. & Chen, Q. & Simão Ferreira, C.J. & van Bussel, G.J.W., 2014. "Experimental analysis of the wake of a horizontal-axis wind-turbine model," Renewable Energy, Elsevier, vol. 70(C), pages 31-46.
    3. Jeon, Sanghyeon & Kim, Bumsuk & Huh, Jongchul, 2015. "Comparison and verification of wake models in an onshore wind farm considering single wake condition of the 2 MW wind turbine," Energy, Elsevier, vol. 93(P2), pages 1769-1777.
    4. Turner, S.D.O. & Romero, D.A. & Zhang, P.Y. & Amon, C.H. & Chan, T.C.Y., 2014. "A new mathematical programming approach to optimize wind farm layouts," Renewable Energy, Elsevier, vol. 63(C), pages 674-680.
    5. Feng, Ju & Shen, Wen Zhong, 2015. "Solving the wind farm layout optimization problem using random search algorithm," Renewable Energy, Elsevier, vol. 78(C), pages 182-192.
    6. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    7. Parada, Leandro & Herrera, Carlos & Flores, Paulo & Parada, Victor, 2017. "Wind farm layout optimization using a Gaussian-based wake model," Renewable Energy, Elsevier, vol. 107(C), pages 531-541.
    8. Lee, Jaejoon & Son, Eunkuk & Hwang, Byungho & Lee, Soogab, 2013. "Blade pitch angle control for aerodynamic performance optimization of a wind farm," Renewable Energy, Elsevier, vol. 54(C), pages 124-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taesu Jeon & Dongmyoung Kim & Yuan Song & Insu Paek, 2021. "Design and Validation of Demanded Power Point Tracking Control Algorithm for MIMO Controllers in Wind Turbines," Energies, MDPI, vol. 14(18), pages 1-18, September.
    2. Hyungyu Kim & Kwansu Kim & Insu Paek, 2019. "A Study on the Effect of Closed-Loop Wind Farm Control on Power and Tower Load in Derating the TSO Command Condition," Energies, MDPI, vol. 12(10), pages 1-19, May.
    3. Puertas-Frías, Carmen M. & Willson, Clinton S. & García-Salaberri, Pablo A., 2022. "Design and economic analysis of a hydrokinetic turbine for household applications," Renewable Energy, Elsevier, vol. 199(C), pages 587-598.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    2. Kaldellis, John K. & Triantafyllou, Panagiotis & Stinis, Panagiotis, 2021. "Critical evaluation of Wind Turbines’ analytical wake models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    5. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    6. Wang, Yangwei & Lin, Jiahuan & Zhang, Jun, 2022. "Investigation of a new analytical wake prediction method for offshore floating wind turbines considering an accurate incoming wind flow," Renewable Energy, Elsevier, vol. 185(C), pages 827-849.
    7. Wu, Chutian & Yang, Xiaolei & Zhu, Yaxin, 2021. "On the design of potential turbine positions for physics-informed optimization of wind farm layout," Renewable Energy, Elsevier, vol. 164(C), pages 1108-1120.
    8. Ingrid Neunaber & Michael Hölling & Martin Obligado, 2022. "Wind Tunnel Study on the Tip Speed Ratio’s Impact on a Wind Turbine Wake Development," Energies, MDPI, vol. 15(22), pages 1-15, November.
    9. Tao, Siyu & Xu, Qingshan & Feijóo, Andrés & Zheng, Gang & Zhou, Jiemin, 2020. "Wind farm layout optimization with a three-dimensional Gaussian wake model," Renewable Energy, Elsevier, vol. 159(C), pages 553-569.
    10. Abdelsalam, Ali M. & El-Shorbagy, M.A., 2018. "Optimization of wind turbines siting in a wind farm using genetic algorithm based local search," Renewable Energy, Elsevier, vol. 123(C), pages 748-755.
    11. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2021. "Wind Farm Area Shape Optimization Using Newly Developed Multi-Objective Evolutionary Algorithms," Energies, MDPI, vol. 14(14), pages 1-25, July.
    12. Shakoor, Rabia & Hassan, Mohammad Yusri & Raheem, Abdur & Wu, Yuan-Kang, 2016. "Wake effect modeling: A review of wind farm layout optimization using Jensen׳s model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1048-1059.
    13. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    14. Ling, Ziyan & Zhao, Zhenzhou & Liu, Yige & Liu, Huiwen & Ali, Kashif & Liu, Yan & Wen, Yifan & Wang, Dingding & Li, Shijun & Su, Chunhao, 2024. "Multi-objective layout optimization for wind farms based on non-uniformly distributed turbulence and a new three-dimensional multiple wake model," Renewable Energy, Elsevier, vol. 227(C).
    15. Ulku, I. & Alabas-Uslu, C., 2019. "A new mathematical programming approach to wind farm layout problem under multiple wake effects," Renewable Energy, Elsevier, vol. 136(C), pages 1190-1201.
    16. Sarlak, H. & Meneveau, C. & Sørensen, J.N., 2015. "Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions," Renewable Energy, Elsevier, vol. 77(C), pages 386-399.
    17. Nicolas Tobin & Ali M. Hamed & Leonardo P. Chamorro, 2015. "An Experimental Study on the Effects ofWinglets on the Wake and Performance of a ModelWind Turbine," Energies, MDPI, vol. 8(10), pages 1-18, October.
    18. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
    19. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
    20. Chen, Kaixuan & Lin, Jin & Qiu, Yiwei & Liu, Feng & Song, Yonghua, 2022. "Joint optimization of wind farm layout considering optimal control," Renewable Energy, Elsevier, vol. 182(C), pages 787-796.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2823-:d:176835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.