IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8298-d698553.html
   My bibliography  Save this article

Analytical Study of Nonlinear Vibration in a Rub-Impact Jeffcott Rotor

Author

Listed:
  • Nicolae Herisanu

    (Department of Mechanics and Strength of Materials, University Politehnica Timisoara, 300222 Timisoara, Romania
    Center for Fundamental Technical Research, Romanian Academy-Branch of Timisoara, 300223 Timisoara, Romania)

  • Vasile Marinca

    (Department of Mechanics and Strength of Materials, University Politehnica Timisoara, 300222 Timisoara, Romania
    Center for Fundamental Technical Research, Romanian Academy-Branch of Timisoara, 300223 Timisoara, Romania)

Abstract

The purpose of this work is to explore the nonlinear vibration of a rub-impact Jeffcott rotor. In the first stage, the motion is not affected by the friction force, but in the second stage, the motion is influenced by the normal force and the friction force. The governing equations of the rotor of this model are derived in this paper. In consequence, there appears a difference between the two stages. We establish an approximate analytical solution for nonlinear vibrations corresponding to two stages with the mention of the location of jumps. The obtained results are compared with the numerical integration results. The steady-state response and the stability of the solutions are analytically determined for the two stages. The stability of a full annular rub solution is studied with the help of the Routh–Hurwitz criterion. Effects of different parameters of the system, the saddle-node bifurcation (turning points) and the Hopf bifurcation are presented. The main contribution lies in the analytical approximation solution based on the Optimal Auxiliary Functions Method.

Suggested Citation

  • Nicolae Herisanu & Vasile Marinca, 2021. "Analytical Study of Nonlinear Vibration in a Rub-Impact Jeffcott Rotor," Energies, MDPI, vol. 14(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8298-:d:698553
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao Fu & Dong Zhen & Yongfeng Yang & Fengshou Gu & Andrew Ball, 2019. "Effects of Bounded Uncertainties on the Dynamic Characteristics of an Overhung Rotor System with Rubbing Fault," Energies, MDPI, vol. 12(22), pages 1-15, November.
    2. Marinca, Bogdan & Marinca, Vasile & Bogdan, Ciprian, 2021. "Dynamics of SEIR epidemic model by optimal auxiliary functions method," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    3. Nicolae Herisanu & Vasile Marinca & Gheorghe Madescu & Florin Dragan, 2019. "Dynamic Response of a Permanent Magnet Synchronous Generator to a Wind Gust," Energies, MDPI, vol. 12(5), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasile Marinca & Nicolae Herisanu, 2020. "Optimal Auxiliary Functions Method for a Pendulum Wrapping on Two Cylinders," Mathematics, MDPI, vol. 8(8), pages 1-18, August.
    2. Michał Frant & Stanisław Kachel & Wojciech Maślanka, 2023. "Gust Modeling with State-of-the-Art Computational Fluid Dynamics (CFD) Software and Its Influence on the Aerodynamic Characteristics of an Unmanned Aerial Vehicle," Energies, MDPI, vol. 16(19), pages 1-19, September.
    3. Marinca, Bogdan & Marinca, Vasile & Bogdan, Ciprian, 2021. "Dynamics of SEIR epidemic model by optimal auxiliary functions method," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    4. Roberto Ciavarella & Giorgio Graditi & Maria Valenti & Anna Pinnarelli & Giuseppe Barone & Maurizio Vizza & Daniele Menniti & Nicola Sorrentino & Giovanni Brusco, 2021. "Modeling of an Energy Hybrid System Integrating Several Storage Technologies: The DBS Technique in a Nanogrid Application," Sustainability, MDPI, vol. 13(3), pages 1-35, January.
    5. Rajvikram Madurai Elavarasan & Aritra Ghosh & Tapas K. Mallick & Apoorva Krishnamurthy & Meenal Saravanan, 2019. "Investigations on Performance Enhancement Measures of the Bidirectional Converter in PV–Wind Interconnected Microgrid System," Energies, MDPI, vol. 12(14), pages 1-22, July.
    6. Rashid Nawaz & Laiq Zada & Abraiz Khattak & Muhammad Jibran & Adam Khan, 2019. "Optimum Solutions of Fractional Order Zakharov–Kuznetsov Equations," Complexity, Hindawi, vol. 2019, pages 1-9, December.
    7. Nicolae Herisanu & Vasile Marinca, 2020. "An Efficient Analytical Approach to Investigate the Dynamics of a Misaligned Multirotor System," Mathematics, MDPI, vol. 8(7), pages 1-18, July.
    8. Nicolae Herisanu & Bogdan Marinca & Livija Cveticanin & Vasile Marinca, 2023. "Analysis of the Vibro-Impact Nonlinear Damped and Forced Oscillator in the Dynamics of the Electromagnetic Actuation," Mathematics, MDPI, vol. 11(9), pages 1-24, May.
    9. Mohamed El-Borhamy & Essam Eddin M. Rashad & Ismail Sobhy & M. Kamel El-Sayed, 2021. "Modeling and Semi-Analytic Stability Analysis for Dynamics of AC Machines," Mathematics, MDPI, vol. 9(6), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8298-:d:698553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.