IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2194-d1140749.html
   My bibliography  Save this article

Analysis of the Vibro-Impact Nonlinear Damped and Forced Oscillator in the Dynamics of the Electromagnetic Actuation

Author

Listed:
  • Nicolae Herisanu

    (Department of Mechanics and Strength of Materials, University Politehnica Timisoara, 300006 Timisoara, Romania
    Center for Advanced and Fundamental Technical Research, Department of Electromechanics and Vibration, Romanian Academy, 300223 Timisoara, Romania)

  • Bogdan Marinca

    (Department of Applied Electronics, University Politehnica Timisoara, 300006 Timisoara, Romania)

  • Livija Cveticanin

    (Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia)

  • Vasile Marinca

    (Department of Mechanics and Strength of Materials, University Politehnica Timisoara, 300006 Timisoara, Romania
    Center for Advanced and Fundamental Technical Research, Department of Electromechanics and Vibration, Romanian Academy, 300223 Timisoara, Romania)

Abstract

In this work, the effect of vibro-impact nonlinear, forced, and damped oscillator on the dynamics of the electromagnetic actuation (EA) near primary resonance is studied. The vibro-impact regime is given by the presence of the Hertzian contact. The EA is supplied by a constant current generating a static force and by an actuation generating a fast alternative force. The deformations between the solids in contact are supposed to be elastic and the contact is maintained. In this study, a single degree of freedom nonlinear damped oscillator under a static normal load is considered. An analytical approximate solution of this problem is obtained using the Optimal Auxiliary Functions Method (OAFM). By means of some auxiliary functions and introducing so-called convergence-control parameters, a very accurate approximate solution of the governing equation can be obtained. We need only the first iteration for this technique, applying a rigorous mathematical procedure in finding the optimal values of the convergence-control parameters. Local stability by means of the Routh-Hurwitz criteria and global stability using the Lyapunov function are also studied. It should be emphasized that the amplitude of AC excitation voltage is not considered much lower than bias voltage (in contrast to other studies). Also, the Hertzian contact coupled with EA is analytically studied for the first time in the present work. The approximate analytical solution is determined with a high accuracy on two domains. Local stability is established in five cases with some cases depending on the trace of the Jacobian matrix and of the discriminant of the characteristic equation. In the study of global stability, the estimate parameters which are components of the Lyapunov function are given in a closed form and a graphical form and therefore the Lyapunov function is well-determined.

Suggested Citation

  • Nicolae Herisanu & Bogdan Marinca & Livija Cveticanin & Vasile Marinca, 2023. "Analysis of the Vibro-Impact Nonlinear Damped and Forced Oscillator in the Dynamics of the Electromagnetic Actuation," Mathematics, MDPI, vol. 11(9), pages 1-24, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2194-:d:1140749
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2194/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2194/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicolae Herisanu & Vasile Marinca, 2020. "An Efficient Analytical Approach to Investigate the Dynamics of a Misaligned Multirotor System," Mathematics, MDPI, vol. 8(7), pages 1-18, July.
    2. Marinca, Bogdan & Marinca, Vasile & Bogdan, Ciprian, 2021. "Dynamics of SEIR epidemic model by optimal auxiliary functions method," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    3. Vasile Marinca & Nicolae Herisanu, 2020. "Optimal Auxiliary Functions Method for a Pendulum Wrapping on Two Cylinders," Mathematics, MDPI, vol. 8(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolae Herisanu & Bogdan Marinca & Vasile Marinca, 2022. "Dynamics of the Vibro-Impact Nonlinear Damped and Forced Oscillator under the Influence of the Electromagnetic Actuation," Mathematics, MDPI, vol. 10(18), pages 1-16, September.
    2. Nicolae Herisanu & Vasile Marinca, 2021. "Analytical Study of Nonlinear Vibration in a Rub-Impact Jeffcott Rotor," Energies, MDPI, vol. 14(24), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2194-:d:1140749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.