IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1741958.html
   My bibliography  Save this article

Optimum Solutions of Fractional Order Zakharov–Kuznetsov Equations

Author

Listed:
  • Rashid Nawaz
  • Laiq Zada
  • Abraiz Khattak
  • Muhammad Jibran
  • Adam Khan

Abstract

In this paper, the Optimal Homotopy Asymptotic Method is extended to derive the approximate solutions of fractional order two-dimensional partial differential equations. The fractional order Zakharov–Kuznetsov equation is solved as a test example, while the time fractional derivatives are described in the Caputo sense. The solutions of the problem are computed in the form of rapidly convergent series with easily calculable components using Mathematica. Reliability of the proposed method is given by comparison with other methods in the literature. The obtained results showed that the method is powerful and efficient for determination of solution of higher-dimensional fractional order partial differential equations.

Suggested Citation

  • Rashid Nawaz & Laiq Zada & Abraiz Khattak & Muhammad Jibran & Adam Khan, 2019. "Optimum Solutions of Fractional Order Zakharov–Kuznetsov Equations," Complexity, Hindawi, vol. 2019, pages 1-9, December.
  • Handle: RePEc:hin:complx:1741958
    DOI: 10.1155/2019/1741958
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/1741958.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/1741958.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1741958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Momani, Shaher & Odibat, Zaid, 2007. "Numerical comparison of methods for solving linear differential equations of fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1248-1255.
    2. Lei Fu & Hongwei Yang, 2019. "An Application of (3+1)-Dimensional Time-Space Fractional ZK Model to Analyze the Complex Dust Acoustic Waves," Complexity, Hindawi, vol. 2019, pages 1-15, August.
    3. Momani, Shaher, 2006. "Non-perturbative analytical solutions of the space- and time-fractional Burgers equations," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 930-937.
    4. Nicolae Herisanu & Vasile Marinca & Gheorghe Madescu & Florin Dragan, 2019. "Dynamic Response of a Permanent Magnet Synchronous Generator to a Wind Gust," Energies, MDPI, vol. 12(5), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Yongguang & Li, Han-Xiong, 2008. "The synchronization of fractional-order Rössler hyperchaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1393-1403.
    2. Odibat, Zaid M., 2009. "Computational algorithms for computing the fractional derivatives of functions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2013-2020.
    3. Yu, Yongguang & Li, Han-Xiong, 2009. "Application of the multistage homotopy-perturbation method to solve a class of hyperchaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2330-2337.
    4. Michał Frant & Stanisław Kachel & Wojciech Maślanka, 2023. "Gust Modeling with State-of-the-Art Computational Fluid Dynamics (CFD) Software and Its Influence on the Aerodynamic Characteristics of an Unmanned Aerial Vehicle," Energies, MDPI, vol. 16(19), pages 1-19, September.
    5. Eriqat, Tareq & El-Ajou, Ahmad & Oqielat, Moa'ath N. & Al-Zhour, Zeyad & Momani, Shaher, 2020. "A New Attractive Analytic Approach for Solutions of Linear and Nonlinear Neutral Fractional Pantograph Equations," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    6. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    7. Xu, Lan, 2009. "The variational iteration method for fourth order boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1386-1394.
    8. Roman Parovik, 2020. "Mathematical Modeling of Linear Fractional Oscillators," Mathematics, MDPI, vol. 8(11), pages 1-26, October.
    9. Marinca, Bogdan & Marinca, Vasile & Bogdan, Ciprian, 2021. "Dynamics of SEIR epidemic model by optimal auxiliary functions method," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    10. Deng, Hongmin & Li, Tao & Wang, Qionghua & Li, Hongbin, 2009. "A fractional-order hyperchaotic system and its synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 962-969.
    11. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    12. Memarbashi, Reza, 2008. "Numerical solution of the Laplace equation in annulus by Adomian decomposition method," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 138-143.
    13. Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
    14. Marwan Abukhaled, 2013. "Variational Iteration Method for Nonlinear Singular Two-Point Boundary Value Problems Arising in Human Physiology," Journal of Mathematics, Hindawi, vol. 2013, pages 1-4, February.
    15. Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "A numeric–analytic method for approximating the chaotic Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1784-1791.
    16. Akram, Ghazala & Sadaf, Maasoomah & Abbas, Muhammad & Zainab, Iqra & Gillani, Syeda Rijaa, 2022. "Efficient techniques for traveling wave solutions of time-fractional Zakharov–Kuznetsov equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 607-622.
    17. Soliman, A.A., 2009. "On the solution of two-dimensional coupled Burgers’ equations by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1146-1155.
    18. Tuan Hoang, Manh & Nagy, A.M., 2019. "Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 24-34.
    19. Goh, S.M. & Noorani, M.S.M. & Hashim, I., 2009. "Efficacy of variational iteration method for chaotic Genesio system – Classical and multistage approach," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2152-2159.
    20. Tomar, Saurabh & Singh, Mehakpreet & Vajravelu, Kuppalapalle & Ramos, Higinio, 2023. "Simplifying the variational iteration method: A new approach to obtain the Lagrange multiplier," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 640-644.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1741958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.