IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8049-d693052.html
   My bibliography  Save this article

Selection of Underground Hydrogen Storage Risk Assessment Techniques

Author

Listed:
  • Barbara Uliasz-Misiak

    (Faculty of Drilling, AGH University of Science and Technology, Oil and Gas, Mickiewicza Av. 30, 30-059 Krakow, Poland)

  • Joanna Lewandowska-Śmierzchalska

    (Faculty of Drilling, AGH University of Science and Technology, Oil and Gas, Mickiewicza Av. 30, 30-059 Krakow, Poland)

  • Rafał Matuła

    (Faculty of Drilling, AGH University of Science and Technology, Oil and Gas, Mickiewicza Av. 30, 30-059 Krakow, Poland)

Abstract

The article proposes the use of the analytic hierarchy process (AHP) method to select a risk assessment technique associated with underground hydrogen storage. The initial choosing and ranking of risk assessment techniques can be considered as a multi-criteria decision problem. The usage of a decision model based on six criteria is proposed. A ranking of methods for estimating the risks associated with underground hydrogen storage is presented. The obtained results show that the application of the AHP-based approach may be a useful tool for selecting the UHS risk assessment technique. The proposed method makes it possible to make an objective decision of the most satisfactory approach, from the point of view of all the adopted decision criteria, regarding the selection of the best risk assessment technique.

Suggested Citation

  • Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła, 2021. "Selection of Underground Hydrogen Storage Risk Assessment Techniques," Energies, MDPI, vol. 14(23), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8049-:d:693052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8049/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8049/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Portarapillo & Almerinda Di Benedetto, 2021. "Risk Assessment of the Large-Scale Hydrogen Storage in Salt Caverns," Energies, MDPI, vol. 14(10), pages 1-12, May.
    2. N. Kampman & A. Busch & P. Bertier & J. Snippe & S. Hangx & V. Pipich & Z. Di & G. Rother & J. F. Harrington & J. P. Evans & A. Maskell & H. J. Chapman & M. J. Bickle, 2016. "Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
    3. Yang, Chunhe & Jing, Wenjun & Daemen, J.J.K. & Zhang, Guimin & Du, Chao, 2013. "Analysis of major risks associated with hydrocarbon storage caverns in bedded salt rock," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 94-111.
    4. Tarkowski, Radoslaw, 2019. "Underground hydrogen storage: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 86-94.
    5. Ho, William, 2008. "Integrated analytic hierarchy process and its applications - A literature review," European Journal of Operational Research, Elsevier, vol. 186(1), pages 211-228, April.
    6. Thomas L. Saaty & Luis G. Vargas, 2012. "Models, Methods, Concepts & Applications of the Analytic Hierarchy Process," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4614-3597-6, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. Alexandra Lenis Escobar & Ramón Rueda López & Jorge E. García Guerrero & Enrique Salinas Cuadrado, 2020. "Design of Strategies for the Implementation and Management of a Complementary Monetary System Using the SWOT-AHP Methodology," Sustainability, MDPI, vol. 12(17), pages 1-23, August.
    3. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    5. Huaguang Yan & Wenda Zhang & Jiandong Kang & Tiejiang Yuan, 2023. "The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China," Energies, MDPI, vol. 16(13), pages 1-21, June.
    6. Maria Portarapillo & Almerinda Di Benedetto, 2021. "Risk Assessment of the Large-Scale Hydrogen Storage in Salt Caverns," Energies, MDPI, vol. 14(10), pages 1-12, May.
    7. Jahanbakhsh, Amir & Louis Potapov-Crighton, Alexander & Mosallanezhad, Abdolali & Tohidi Kaloorazi, Nina & Maroto-Valer, M. Mercedes, 2024. "Underground hydrogen storage: A UK perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Ewelina Pawelczyk & Natalia Łukasik & Izabela Wysocka & Andrzej Rogala & Jacek Gębicki, 2022. "Recent Progress on Hydrogen Storage and Production Using Chemical Hydrogen Carriers," Energies, MDPI, vol. 15(14), pages 1-34, July.
    9. Csató, László & Petróczy, Dóra Gréta, 2021. "On the monotonicity of the eigenvector method," European Journal of Operational Research, Elsevier, vol. 292(1), pages 230-237.
    10. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    11. Li, Yan-Lai & Tang, Jia-Fu & Chin, Kwai-Sang & Jiang, Yu-Shi & Han, Yi & Pu, Yun, 2011. "Estimating the final priority ratings of engineering characteristics in mature-period product improvement by MDBA and AHP," International Journal of Production Economics, Elsevier, vol. 131(2), pages 575-586, June.
    12. Martina Artmann, 2013. "Response-Efficiency-Assessment: A Conceptual Framework For Rating Policy'S Efficiency To Meet Sustainable Development On The Example Of Soil Sealing Management," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 1-33.
    13. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    14. Thomas L. Saaty, 2013. "The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach," Operations Research, INFORMS, vol. 61(5), pages 1101-1118, October.
    15. Juan Cabello Eras & Dayli Covas Varela & Gilberto Hernández Pérez & Alexis Sagastume Gutiérrez & Dunia García Lorenzo & Carlo Vandecasteele & Luc Hens, 2014. "Comparative study of the urban quality of life in Cuban first-level cities from an objective dimension," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(1), pages 195-215, February.
    16. Mohammad Reza Salehizadeh & Mahdi Amidi Koohbijari & Hassan Nouri & Akın Taşcıkaraoğlu & Ozan Erdinç & João P. S. Catalão, 2019. "Bi-Objective Optimization Model for Optimal Placement of Thyristor-Controlled Series Compensator Devices," Energies, MDPI, vol. 12(13), pages 1-16, July.
    17. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    18. Gözaçan Nazlıcan & Lafci Çisem, 2020. "Evaluation of Key Performance Indicators of Logistics Firms," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 11(1), pages 24-32, February.
    19. Meiran Zhiyenbayev & Nadezhda Kunicina & Madina Mansurova & Antons Patlins & Jelena Caiko & Vladimir Beliaev & Roberts Grants & Martins Bisenieks & Guldana Shyntore, 2024. "Development of Aggregated Sustainability Indicators for Quality of Life Evaluations in Urban Areas of the Republic of Kazakhstan," Sustainability, MDPI, vol. 16(21), pages 1-30, October.
    20. Jiabin Liu & Ji Han, 2017. "Does a Certain Rule Exist in the Long-Term Change of a City’s Livability? Evidence from New York, Tokyo, and Shanghai," Sustainability, MDPI, vol. 9(10), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8049-:d:693052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.