IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5291-d622251.html
   My bibliography  Save this article

Development of an Adaptive Model Predictive Control for Platooning Safety in Battery Electric Vehicles

Author

Listed:
  • Antonio Capuano

    (Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10125 Torino, Italy)

  • Matteo Spano

    (Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10125 Torino, Italy
    Center of Automotive Research and Sustainable Mobility (CARS), Politecnico di Torino, 10125 Torino, Italy)

  • Alessia Musa

    (Center of Automotive Research and Sustainable Mobility (CARS), Politecnico di Torino, 10125 Torino, Italy
    Department of Energetic (DENERG), Politecnico di Torino, 10125 Torino, Italy)

  • Gianluca Toscano

    (Teoresi S.p.A., 10125 Torino, Italy)

  • Daniela Anna Misul

    (Center of Automotive Research and Sustainable Mobility (CARS), Politecnico di Torino, 10125 Torino, Italy
    Department of Energetic (DENERG), Politecnico di Torino, 10125 Torino, Italy)

Abstract

The recent and continuous improvement in the transportation field provides several different opportunities for enhancing safety and comfort in passenger vehicles. In this context, Adaptive Cruise Control (ACC) might provide additional benefits, including smoothness of the traffic flow and collision avoidance. In addition, Vehicle-to-Vehicle (V2V) communication may be exploited in the car-following model to obtain further improvements in safety and comfort by guaranteeing fast response to critical events. In this paper, firstly an Adaptive Model Predictive Control was developed for managing the Cooperative ACC scenario of two vehicles; as a second step, the safety analysis during a cut-in maneuver was performed, extending the platooning vehicles’ number to four. The effectiveness of the proposed methodology was assessed for in different driving scenarios such as diverse cruising speeds, steep accelerations, and aggressive decelerations. Moreover, the controller was validated by considering various speed profiles of the leader vehicle, including a real drive cycle obtained using a random drive cycle generator software. Results demonstrated that the proposed control strategy was capable of ensuring safety in virtually all test cases and quickly responding to unexpected cut-in maneuvers. Indeed, different scenarios have been tested, including acceleration and deceleration phases at high speeds where the control strategy successfully avoided any collision and stabilized the vehicle platoon approximately 20–30 s after the sudden cut-in. Concerning the comfort, it was demonstrated that improvements were possible in the aggressive drive cycle whereas different scenarios were found in the random cycle, depending on where the cut-in maneuver occurred.

Suggested Citation

  • Antonio Capuano & Matteo Spano & Alessia Musa & Gianluca Toscano & Daniela Anna Misul, 2021. "Development of an Adaptive Model Predictive Control for Platooning Safety in Battery Electric Vehicles," Energies, MDPI, vol. 14(17), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5291-:d:622251
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    2. Maino, Claudio & Misul, Daniela & Musa, Alessia & Spessa, Ezio, 2021. "Optimal mesh discretization of the dynamic programming for hybrid electric vehicles," Applied Energy, Elsevier, vol. 292(C).
    3. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Pier Giuseppe Anselma, 2021. "Optimization-Driven Powertrain-Oriented Adaptive Cruise Control to Improve Energy Saving and Passenger Comfort," Energies, MDPI, vol. 14(10), pages 1-28, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanna Hrinchenko & Viktor Koval & Nadiia Shmygol & Oleksandr Sydorov & Oksana Tsimoshynska & Dominika Matuszewska, 2023. "Approaches to Sustainable Energy Management in Ensuring Safety of Power Equipment Operation," Energies, MDPI, vol. 16(18), pages 1-15, September.
    2. Alessia Musa & Michele Pipicelli & Matteo Spano & Francesco Tufano & Francesco De Nola & Gabriele Di Blasio & Alfredo Gimelli & Daniela Anna Misul & Gianluca Toscano, 2021. "A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems," Energies, MDPI, vol. 14(23), pages 1-24, November.
    3. Zhao, Fangxia & Shang, HuaYan & Cui, JiHui, 2023. "Role of electric vehicle driving behavior on optimal setting of wireless charging lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asadullah Khalid & Alexander Stevenson & Arif I. Sarwat, 2021. "Performance Analysis of Commercial Passive Balancing Battery Management System Operation Using a Hardware-in-the-Loop Testbed," Energies, MDPI, vol. 14(23), pages 1-14, December.
    2. Sara Luciani & Andrea Tonoli, 2022. "Control Strategy Assessment for Improving PEM Fuel Cell System Efficiency in Fuel Cell Hybrid Vehicles," Energies, MDPI, vol. 15(6), pages 1-17, March.
    3. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    4. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    5. Alexandros Nikolian & Yousef Firouz & Rahul Gopalakrishnan & Jean-Marc Timmermans & Noshin Omar & Peter Van den Bossche & Joeri Van Mierlo, 2016. "Lithium Ion Batteries—Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion," Energies, MDPI, vol. 9(5), pages 1-23, May.
    6. Sandra Castano-Solis & Daniel Serrano-Jimenez & Lucia Gauchia & Javier Sanz, 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs," Energies, MDPI, vol. 10(3), pages 1-13, February.
    7. Pierpaolo Polverino & Ivan Arsie & Cesare Pianese, 2021. "Optimal Energy Management for Hybrid Electric Vehicles Based on Dynamic Programming and Receding Horizon," Energies, MDPI, vol. 14(12), pages 1-11, June.
    8. Matteo Acquarone & Claudio Maino & Daniela Misul & Ezio Spessa & Antonio Mastropietro & Luca Sorrentino & Enrico Busto, 2023. "Influence of the Reward Function on the Selection of Reinforcement Learning Agents for Hybrid Electric Vehicles Real-Time Control," Energies, MDPI, vol. 16(6), pages 1-22, March.
    9. Ming Cai & Weijie Chen & Xiaojun Tan, 2017. "Battery State-Of-Charge Estimation Based on a Dual Unscented Kalman Filter and Fractional Variable-Order Model," Energies, MDPI, vol. 10(10), pages 1-16, October.
    10. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    11. Yi Zhang & Qiang Guo & Jie Song, 2023. "Internet-Distributed Hardware-in-the-Loop Simulation Platform for Plug-In Fuel Cell Hybrid Vehicles," Energies, MDPI, vol. 16(18), pages 1-17, September.
    12. Kotub Uddin & Alessandro Picarelli & Christopher Lyness & Nigel Taylor & James Marco, 2014. "An Acausal Li-Ion Battery Pack Model for Automotive Applications," Energies, MDPI, vol. 7(9), pages 1-26, August.
    13. Thanh-Tung Nguyen & Abdul Basit Khan & Younghwi Ko & Woojin Choi, 2020. "An Accurate State of Charge Estimation Method for Lithium Iron Phosphate Battery Using a Combination of an Unscented Kalman Filter and a Particle Filter," Energies, MDPI, vol. 13(17), pages 1-15, September.
    14. Noshin Omar & Peter Van den Bossche & Thierry Coosemans & Joeri Van Mierlo, 2013. "Peukert Revisited—Critical Appraisal and Need for Modification for Lithium-Ion Batteries," Energies, MDPI, vol. 6(11), pages 1-17, October.
    15. Poolla, Chaitanya & Ishihara, Abraham K. & Milito, Rodolfo, 2019. "Designing near-optimal policies for energy management in a stochastic environment," Applied Energy, Elsevier, vol. 242(C), pages 1725-1737.
    16. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    17. Chivon Choeung & Meng Leang Kry & Young Il Lee, 2018. "Robust Tracking Control of a Three-Phase Charger under Unbalanced Grid Conditions," Energies, MDPI, vol. 11(12), pages 1-16, December.
    18. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    19. Jiang, Yunfeng & Xia, Bing & Zhao, Xin & Nguyen, Truong & Mi, Chris & de Callafon, Raymond A., 2017. "Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery," Energy, Elsevier, vol. 135(C), pages 171-181.
    20. Van Quan Dao & Minh-Chau Dinh & Chang Soon Kim & Minwon Park & Chil-Hoon Doh & Jeong Hyo Bae & Myung-Kwan Lee & Jianyong Liu & Zhiguo Bai, 2021. "Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network," Energies, MDPI, vol. 14(9), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5291-:d:622251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.