IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v44y2015i23p4953-4961.html
   My bibliography  Save this article

Burr-XII Distribution Parametric Estimation and Estimation of Reliability of Multicomponent Stress-Strength

Author

Listed:
  • G. Srinivasa Rao
  • Muhammad Aslam
  • Debasis Kundu

Abstract

In this paper, we estimate multicomponent stress-strength reliability by assuming Burr-XII distribution. The research methodology adopted here is to estimate the parameter using maximum likelihood estimation. Reliability is estimated using the maximum likelihood method of estimation and results are compared using the Monte Carlo simulation for small samples. Using real data sets we illustrate the procedure clearly.

Suggested Citation

  • G. Srinivasa Rao & Muhammad Aslam & Debasis Kundu, 2015. "Burr-XII Distribution Parametric Estimation and Estimation of Reliability of Multicomponent Stress-Strength," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(23), pages 4953-4961, December.
  • Handle: RePEc:taf:lstaxx:v:44:y:2015:i:23:p:4953-4961
    DOI: 10.1080/03610926.2013.821490
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2013.821490
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2013.821490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amal S. Hassan & Ibrahim M. Almanjahie & Amer Ibrahim Al-Omari & Loai Alzoubi & Heba Fathy Nagy, 2023. "Stress–Strength Modeling Using Median-Ranked Set Sampling: Estimation, Simulation, and Application," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    2. Shubham Saini & Renu Garg, 2022. "Reliability inference for multicomponent stress–strength model from Kumaraswamy-G family of distributions based on progressively first failure censored samples," Computational Statistics, Springer, vol. 37(4), pages 1795-1837, September.
    3. Prashant Kumar Sonker & Mukesh Kumar & Agni Saroj, 2023. "Stress–strength reliability models on power-Muth distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 173-195, March.
    4. Fatih Kızılaslan, 2018. "Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on a general class of inverse exponentiated distributions," Statistical Papers, Springer, vol. 59(3), pages 1161-1192, September.
    5. Lauren Sauer & Yuhlong Lio & Tzong-Ru Tsai, 2020. "Reliability Inference for the Multicomponent System Based on Progressively Type II Censored Samples from Generalized Pareto Distributions," Mathematics, MDPI, vol. 8(7), pages 1-14, July.
    6. M. S. Kotb & M. Z. Raqab, 2021. "Estimation of reliability for multi-component stress–strength model based on modified Weibull distribution," Statistical Papers, Springer, vol. 62(6), pages 2763-2797, December.
    7. Fulment Arnold K. & Josephat Peter K. & Srinivasa Rao Gadde, 2017. "Estimation of Reliability in Multicomponent Stress-Strength Based on Dagum Distribution," Stochastics and Quality Control, De Gruyter, vol. 32(2), pages 77-85, December.
    8. Liang Wang & Huizhong Lin & Kambiz Ahmadi & Yuhlong Lio, 2021. "Estimation of Stress-Strength Reliability for Multicomponent System with Rayleigh Data," Energies, MDPI, vol. 14(23), pages 1-23, November.
    9. Akram Kohansal, 2019. "On estimation of reliability in a multicomponent stress-strength model for a Kumaraswamy distribution based on progressively censored sample," Statistical Papers, Springer, vol. 60(6), pages 2185-2224, December.
    10. Yuhlong Lio & Tzong-Ru Tsai & Liang Wang & Ignacio Pascual Cecilio Tejada, 2022. "Inferences of the Multicomponent Stress–Strength Reliability for Burr XII Distributions," Mathematics, MDPI, vol. 10(14), pages 1-28, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:44:y:2015:i:23:p:4953-4961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.