IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v59y2018i3d10.1007_s00362-016-0810-7.html
   My bibliography  Save this article

Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on a general class of inverse exponentiated distributions

Author

Listed:
  • Fatih Kızılaslan

    (Marmara University)

Abstract

A s-out-of-k : G system consists of k components functions if and only if at least s components functions. In this paper, we consider the s-out-of-k : G system when this system is exposed a common random stress and the underlying distributions belong to the family of inverse exponentiated distributions. The estimates of this sytem reliability are investigated by using classical and Bayesian approaches. The uniformly minimum variance unbiased and exact Bayes estimates of the reliability of system are obtained analytically when the common second parameter is known. The Bayes estimates for the reliability of system have been developed by using Lindley’s approximation and the Markov Chain Monte Carlo method due to the lack of explicit forms when the all parameters are unknown. The asymptotic confidence interval and coverage probabilities are derived based on the Fisher’s information matrix. The highest probability density credible interval is constructed by using the Markov Chain Monte Carlo method. The comparison of the derived estimates are carried out by using Monte Carlo simulations. Real data set is also analysed for an illustration of the findings.

Suggested Citation

  • Fatih Kızılaslan, 2018. "Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on a general class of inverse exponentiated distributions," Statistical Papers, Springer, vol. 59(3), pages 1161-1192, September.
  • Handle: RePEc:spr:stpapr:v:59:y:2018:i:3:d:10.1007_s00362-016-0810-7
    DOI: 10.1007/s00362-016-0810-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-016-0810-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-016-0810-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanku Dey & Tanujit Dey, 2014. "On progressively censored generalized inverted exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2557-2576, December.
    2. EryIlmaz, Serkan, 2010. "On system reliability in stress-strength setup," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 834-839, May.
    3. Mustafa Nadar & Fatih Kızılaslan, 2014. "Classical and Bayesian estimation of $$P(X>Y)$$ P ( X > Y ) using upper record values from Kumaraswamy’s distribution," Statistical Papers, Springer, vol. 55(3), pages 751-783, August.
    4. G. Srinivasa Rao & Muhammad Aslam & Debasis Kundu, 2015. "Burr-XII Distribution Parametric Estimation and Estimation of Reliability of Multicomponent Stress-Strength," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(23), pages 4953-4961, December.
    5. Eryilmaz, Serkan, 2008. "Multivariate stress-strength reliability model and its evaluation for coherent structures," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1878-1887, October.
    6. Manoj Kumar Rastogi & Yogesh Mani Tripathi, 2014. "Estimation for an inverted exponentiated Rayleigh distribution under type II progressive censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2375-2405, November.
    7. Debasis Kundu & Rameshwar D. Gupta, 2005. "Estimation of P[Y > X] for generalized exponential distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 61(3), pages 291-308, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amulya Kumar Mahto & Yogesh Mani Tripathi, 2020. "Estimation of reliability in a multicomponent stress-strength model for inverted exponentiated Rayleigh distribution under progressive censoring," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1043-1069, December.
    2. Liang Wang & Huizhong Lin & Kambiz Ahmadi & Yuhlong Lio, 2021. "Estimation of Stress-Strength Reliability for Multicomponent System with Rayleigh Data," Energies, MDPI, vol. 14(23), pages 1-23, November.
    3. Yuhlong Lio & Tzong-Ru Tsai & Liang Wang & Ignacio Pascual Cecilio Tejada, 2022. "Inferences of the Multicomponent Stress–Strength Reliability for Burr XII Distributions," Mathematics, MDPI, vol. 10(14), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kızılaslan, Fatih, 2017. "Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on the proportional reversed hazard rate mode," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 136(C), pages 36-62.
    2. Essam A. Ahmed, 2017. "Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(9), pages 1576-1608, July.
    3. Amulya Kumar Mahto & Yogesh Mani Tripathi, 2020. "Estimation of reliability in a multicomponent stress-strength model for inverted exponentiated Rayleigh distribution under progressive censoring," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1043-1069, December.
    4. Fatih Kızılaslan & Mustafa Nadar, 2018. "Estimation of reliability in a multicomponent stress–strength model based on a bivariate Kumaraswamy distribution," Statistical Papers, Springer, vol. 59(1), pages 307-340, March.
    5. Wang, Liang & Wu, Shuo-Jye & Zhang, Chunfang & Dey, Sanku & Tripathi, Yogesh Mani, 2022. "Analysis for constant-stress model on multicomponent system from generalized inverted exponential distribution with stress dependent parameters," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 301-316.
    6. Amal S. Hassan & Ibrahim M. Almanjahie & Amer Ibrahim Al-Omari & Loai Alzoubi & Heba Fathy Nagy, 2023. "Stress–Strength Modeling Using Median-Ranked Set Sampling: Estimation, Simulation, and Application," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    7. Deepesh Bhati & Mohd. Malik & H. Vaman, 2015. "Lindley–Exponential distribution: properties and applications," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 335-357, December.
    8. Y. L. Lio & Tzong-Ru Tsai, 2012. "Estimation of δ= P ( X > Y ) for Burr XII distribution based on the progressively first failure-censored samples," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 309-322, April.
    9. Wang, Bing Xing & Ye, Zhi-Sheng, 2015. "Inference on the Weibull distribution based on record values," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 26-36.
    10. Liang Wang & Huizhong Lin & Kambiz Ahmadi & Yuhlong Lio, 2021. "Estimation of Stress-Strength Reliability for Multicomponent System with Rayleigh Data," Energies, MDPI, vol. 14(23), pages 1-23, November.
    11. Dey, Sanku & Dey, Tanujit & Luckett, Daniel J., 2016. "Statistical inference for the generalized inverted exponential distribution based on upper record values," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 120(C), pages 64-78.
    12. Wong, Augustine C.M. & Wu, Yan Yan, 2009. "A note on interval estimation of P(X," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3650-3658, August.
    13. Kousik Maiti & Suchandan Kayal, 2019. "Estimation for the generalized Fréchet distribution under progressive censoring scheme," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1276-1301, October.
    14. Aisha Fayomi & Ehab M. Almetwally & Maha E. Qura, 2023. "Exploring New Horizons: Advancing Data Analysis in Kidney Patient Infection Rates and UEFA Champions League Scores Using Bivariate Kavya–Manoharan Transformation Family of Distributions," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
    15. A. Asgharzadeh & S. F. Bagheri & N. A. Ibrahim & M. R. Abubakar, 2020. "Optimal confidence regions for the two-parameter exponential distribution based on records," Computational Statistics, Springer, vol. 35(1), pages 309-326, March.
    16. Shubham Saini & Renu Garg, 2022. "Reliability inference for multicomponent stress–strength model from Kumaraswamy-G family of distributions based on progressively first failure censored samples," Computational Statistics, Springer, vol. 37(4), pages 1795-1837, September.
    17. Ehsan Fayyazishishavan & Serpil Kılıç Depren, 2021. "Inference of stress-strength reliability for two-parameter of exponentiated Gumbel distribution based on lower record values," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-12, April.
    18. Prashant Kumar Sonker & Mukesh Kumar & Agni Saroj, 2023. "Stress–strength reliability models on power-Muth distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 173-195, March.
    19. Maha A. Aldahlan & Rana A. Bakoban & Leena S. Alzahrani, 2022. "On Estimating the Parameters of the Beta Inverted Exponential Distribution under Type-II Censored Samples," Mathematics, MDPI, vol. 10(3), pages 1-37, February.
    20. Yuhlong Lio & Tzong-Ru Tsai & Liang Wang & Ignacio Pascual Cecilio Tejada, 2022. "Inferences of the Multicomponent Stress–Strength Reliability for Burr XII Distributions," Mathematics, MDPI, vol. 10(14), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:59:y:2018:i:3:d:10.1007_s00362-016-0810-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.