IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p957-d323257.html
   My bibliography  Save this article

Impact of Energy Storage Useful Life on Intelligent Microgrid Scheduling

Author

Listed:
  • Carlo Baron

    (Electric Engineering Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia)

  • Ameena S. Al-Sumaiti

    (Advanced Power and Energy Center, Electrical Engineering and Computer Science Department, Khalifa University, Abu Dhabi 27788, UAE)

  • Sergio Rivera

    (Electric Engineering Department, Universidad Nacional de Colombia, Bogotá 111321, Colombia)

Abstract

Planning the operation scheduling with optimization heuristic algorithms allows microgrids to have a convenient tool. The developments done in this study attain this scheduling taking into account the impact of energy storage useful life in the microgrid operation. The scheduling solutions, proposed for the answer of an optimization problem, are obtained by using a metaheuristic algorithm called Differential Evolutionary Particle Swarm Optimization (DEEPSO). Thanks to the optimization that is conducted in this study, it is possible to formulate dispatches of the existent microgrid (MG) by always looking for the ideal dispatch that implies a lower cost and provides a greater viability to any project related to renewable energy, electric vehicles and energy storage. These advances oblige the battery manufacturers to start looking for more powerful batteries, with lower costs and longer useful life. In this way, this paper proposes a scheduling tool considering the energy storage useful life.

Suggested Citation

  • Carlo Baron & Ameena S. Al-Sumaiti & Sergio Rivera, 2020. "Impact of Energy Storage Useful Life on Intelligent Microgrid Scheduling," Energies, MDPI, vol. 13(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:957-:d:323257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/957/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/957/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Akhtar Hussain & Van-Hai Bui & Ju-Won Baek & Hak-Man Kim, 2019. "Stationary Energy Storage System for Fast EV Charging Stations: Simultaneous Sizing of Battery and Converter," Energies, MDPI, vol. 12(23), pages 1-17, November.
    2. Frida Berglund & Salman Zaferanlouei & Magnus Korpås & Kjetil Uhlen, 2019. "Optimal Operation of Battery Storage for a Subscribed Capacity-Based Power Tariff Prosumer—A Norwegian Case Study," Energies, MDPI, vol. 12(23), pages 1-24, November.
    3. Xu, Zhiwei & Hu, Zechun & Song, Yonghua & Zhao, Wei & Zhang, Yongwang, 2014. "Coordination of PEVs charging across multiple aggregators," Applied Energy, Elsevier, vol. 136(C), pages 582-589.
    4. Nicolas Martinez & Youssef Benchaabane & Rosa Elvira Silva & Adrian Ilinca & Hussein Ibrahim & Ambrish Chandra & Daniel R. Rousse, 2019. "Computer Model for a Wind–Diesel Hybrid System with Compressed Air Energy Storage," Energies, MDPI, vol. 12(18), pages 1-18, September.
    5. Alessandro Serpi & Mario Porru, 2019. "Modelling and Design of Real-Time Energy Management Systems for Fuel Cell/Battery Electric Vehicles," Energies, MDPI, vol. 12(22), pages 1-21, November.
    6. Dufo-López, Rodolfo & Bernal-Agustín, José L., 2008. "Multi-objective design of PV–wind–diesel–hydrogen–battery systems," Renewable Energy, Elsevier, vol. 33(12), pages 2559-2572.
    7. Tomasz Sikorski & Michał Jasiński & Edyta Ropuszyńska-Surma & Magdalena Węglarz & Dominika Kaczorowska & Paweł Kostyła & Zbigniew Leonowicz & Robert Lis & Jacek Rezmer & Wilhelm Rojewski & Marian Sobi, 2019. "A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept: Economic Aspects," Energies, MDPI, vol. 12(23), pages 1-21, November.
    8. Corentin Jankowiak & Aggelos Zacharopoulos & Caterina Brandoni & Patrick Keatley & Paul MacArtain & Neil Hewitt, 2019. "The Role of Domestic Integrated Battery Energy Storage Systems for Electricity Network Performance Enhancement," Energies, MDPI, vol. 12(20), pages 1-27, October.
    9. Quanming Zhang & Zhichao Ren & Ruiguang Ma & Ming Tang & Zhongxiao He, 2019. "Research on Double-Layer Optimized Configuration of Multi-Energy Storage in Regional Integrated Energy System with Connected Distributed Wind Power," Energies, MDPI, vol. 12(20), pages 1-16, October.
    10. Morais, Hugo & Kádár, Péter & Faria, Pedro & Vale, Zita A. & Khodr, H.M., 2010. "Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming," Renewable Energy, Elsevier, vol. 35(1), pages 151-156.
    11. Alberto Castellazzi & Emre Gurpinar & Zhenyu Wang & Abdallah Suliman Hussein & Pablo Garcia Fernandez, 2019. "Impact of Wide-Bandgap Technology on Renewable Energy and Smart-Grid Power Conversion Applications Including Storage," Energies, MDPI, vol. 12(23), pages 1-14, November.
    12. Kamankesh, Hamidreza & Agelidis, Vassilios G. & Kavousi-Fard, Abdollah, 2016. "Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand," Energy, Elsevier, vol. 100(C), pages 285-297.
    13. Kristoffersen, Trine Krogh & Capion, Karsten & Meibom, Peter, 2011. "Optimal charging of electric drive vehicles in a market environment," Applied Energy, Elsevier, vol. 88(5), pages 1940-1948, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zongwei Liu & Xinglong Liu & Han Hao & Fuquan Zhao & Amer Ahmad Amer & Hassan Babiker, 2020. "Research on the Critical Issues for Power Battery Reusing of New Energy Vehicles in China," Energies, MDPI, vol. 13(8), pages 1-19, April.
    2. Yanbin Li & Yanting Sun & Junjie Zhang & Feng Zhang, 2022. "Optimal Microgrid System Operating Strategy Considering Variable Wind Power Outputs and the Cooperative Game among Subsystem Operators," Energies, MDPI, vol. 15(18), pages 1-20, September.
    3. Hafiz Abdul Muqeet & Hafiz Mudassir Munir & Haseeb Javed & Muhammad Shahzad & Mohsin Jamil & Josep M. Guerrero, 2021. "An Energy Management System of Campus Microgrids: State-of-the-Art and Future Challenges," Energies, MDPI, vol. 14(20), pages 1-34, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sousa, Tiago & Morais, Hugo & Soares, João & Vale, Zita, 2012. "Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints," Applied Energy, Elsevier, vol. 96(C), pages 183-193.
    2. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    3. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    4. Eleonora Achiluzzi & Kirushaanth Kobikrishna & Abenayan Sivabalan & Carlos Sabillon & Bala Venkatesh, 2020. "Optimal Asset Planning for Prosumers Considering Energy Storage and Photovoltaic (PV) Units: A Stochastic Approach," Energies, MDPI, vol. 13(7), pages 1-20, April.
    5. Chung, Yu-Wei & Khaki, Behnam & Li, Tianyi & Chu, Chicheng & Gadh, Rajit, 2019. "Ensemble machine learning-based algorithm for electric vehicle user behavior prediction," Applied Energy, Elsevier, vol. 254(C).
    6. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    7. Tatiana González Grandón & Fernando de Cuadra García & Ignacio Pérez-Arriaga, 2021. "A Market-Driven Management Model for Renewable-Powered Undergrid Mini-Grids," Energies, MDPI, vol. 14(23), pages 1-29, November.
    8. Arslan, Okan & Karasan, Oya Ekin, 2013. "Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks," Energy, Elsevier, vol. 60(C), pages 116-124.
    9. Zhang, Jingrui & Wu, Yihong & Guo, Yiran & Wang, Bo & Wang, Hengyue & Liu, Houde, 2016. "A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints," Applied Energy, Elsevier, vol. 183(C), pages 791-804.
    10. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    11. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    12. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    13. Yanfeng Liu & Yaxing Wang & Xi Luo, 2020. "Design and Operation Optimization of Distributed Solar Energy System Based on Dynamic Operation Strategy," Energies, MDPI, vol. 14(1), pages 1-26, December.
    14. Abbaspour, M. & Satkin, M. & Mohammadi-Ivatloo, B. & Hoseinzadeh Lotfi, F. & Noorollahi, Y., 2013. "Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)," Renewable Energy, Elsevier, vol. 51(C), pages 53-59.
    15. Biegel, Benjamin & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Value of flexible consumption in the electricity markets," Energy, Elsevier, vol. 66(C), pages 354-362.
    16. Uniejewski, Bartosz & Weron, Rafał, 2021. "Regularized quantile regression averaging for probabilistic electricity price forecasting," Energy Economics, Elsevier, vol. 95(C).
    17. Rafał Kopacz & Michał Harasimczuk & Bartosz Lasek & Rafał Miśkiewicz & Jacek Rąbkowski, 2021. "All-SiC ANPC Submodule for an Advanced 1.5 kV EV Charging System under Various Modulation Methods," Energies, MDPI, vol. 14(17), pages 1-16, September.
    18. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    19. Maleki, Akbar & Ameri, Mehran & Keynia, Farshid, 2015. "Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 552-563.
    20. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:957-:d:323257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.